精英家教网 > 高中数学 > 题目详情
1.某航运公司有6艘可运载30吨货物的A型货船与5艘可运载50吨货物的B型货船,现有每天至少运载900吨货物的任务,已知每艘货船每天往返的次数为A型货船4次和B型货船3次,每艘货船每天往返的成本费为A型货船160元,B型货船252元,那么,每天派出A型货船和B型货船各多少艘,公司所花的成本费最低?

分析 设每天派出A型货船和B型货船分别为x艘和y艘,成本为z元,列出约束条件,写出目标函数,画出可行域利用目标函数的几何意义求解即可.

解答 解:设每天派出A型货船和B型货船分别为x艘和y艘,成本为z元,则

$\left\{\begin{array}{l}0≤x≤6\\ 0≤y≤5\\ 120x+150y≥900\end{array}\right.且x,y∈N$…(4分)
目标函数为z=160x+252y.…(6分)(x,y)满足的可行域如图所示△CDE…(8分)
把z=160x+252y变为$l:y=-\frac{40}{63}x+\frac{1}{252}z$
则得到l是斜率为$-\frac{40}{63}$,在y轴上的截距为$\frac{1}{252}z$,随z变化的一族平行直线.…(9分)
在可行域的整点中,点E(5,2)使得z取得最小值.…(11分)
所以,每天派出A型货船5艘,B型货船2艘,公司所花的成本费最小,最低成本为1304元元.    …(12分)

点评 本题考查线性规划的简单应用,列出约束条件以及目标函数,画可行域利用目标函数的几何意义解题的解题的关键,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知x,y,z均为非负数且x+y+z=2,则$\frac{1}{3}$x3+y2+z的最小值为$\frac{13}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将函数y=5sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得函数图象关于y轴对称,则φ=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的内角A,B,C所对的边分别为a,b,c,$\frac{sinA+sinB}{c}$=$\frac{\sqrt{2}sinB-sinC}{b-a}$.
(1)求角A的大小;
(2)若△ABC为锐角三角形,求$\frac{b}{c}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:x2>x是x>1的充分不必要条件;命题q:若数列{an}的前n项和Sn=n2,那么数列{an}是等差数列.则下列命题是真命题的是(  )
A.p∨(¬q)B.p∨qC.p∧qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个命题中真命题为(  )
A.lg(x2+1)≥0B.5≤2C.若x2=4,则x=2D.若x<2,则$\frac{1}{x}$>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如表:
年份20102011201220132014
科研费用x(百万元)1.61.71.81.92.0
公司所获利润y(百万元)11.522.53
(1)求y对x的回归直线方程;(参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=16.3,$\sum_{i=1}^{5}$xiyi=18.5)
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知θ为第二象限角,且$tan(θ-\frac{π}{4})=3$,则sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于(  )
A.20πB.10πC.D.5$\sqrt{5}$π

查看答案和解析>>

同步练习册答案