精英家教网 > 高中数学 > 题目详情

【题目】某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽车费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的平均费用最少?

【答案】解:由题意知维修费用第一年是0.2万元,以后逐年递增0.2万元, 可知汽车每年维修费构成以0.2万元为首项,0.2万元为公差的等差数列,
∴汽车使用n年的总维修费用为0.2n+ ×0.2=0.1n(n+1)万元.
设汽车的年平均费用为y万元,则有y=
=1+0.1n+ ≥1+2 =3,
当且仅当0.1n= ,即n=10时取等号,
即当使用10年时年平均费用y最小
【解析】汽车每年维修费构成以0.2万元为首项,0.2万元为公差的等差数列,从而表示出汽车的年平均费用,由基本不等式可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列函数中,最小值为2的是(
A.y=2x+2x
B.y=sinx+ (0<x<
C.y=x+
D.y=log3x+ (1<x<3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足 ,n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn , 若不等式Sn>kan﹣2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人投篮的水平都比较稳定,若三人各自独立地进行一次投篮测试,则甲投中而乙不投中的概率为 ,乙投中而丙不投中的概率为 ,甲、丙两人都投中的概率为
(1)分别求甲、乙、丙三人各自投篮一次投中的概率;
(2)若丙连续投篮5次,求恰有2次投中的概率;
(3)若丙连续投篮3次,每次投篮,投中得2分,未投中得0分,在3次投篮中,若有2次连续投中,而另外1次未投中,则额外加1分;若3次全投中,则额外加3分,记ξ为丙连续投篮3次后的总得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科答)已知数列{an}及等差数列{bn},若a1=3,an= an1+1(n≥2),a1=b2 , 2a3+a2=b4
(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{anbn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点,求证: (Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲班7位学生成绩的方差s2
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形ABCD中,E,G分别是BC,DC上的点且 =3 =3 ,DE与BG交于点O.
(1)求| |:| |;
(2)若平行四边形ABCD的面积为21,求△BOC的面积.

查看答案和解析>>

同步练习册答案