精英家教网 > 高中数学 > 题目详情

是椭圆上的一点,为焦点,且,则 的面积为(   )

A. B. C. D.16 

C

解析试题分析:设
所以由余弦定理得:
所以
考点:椭圆的简单性质;椭圆的定义;余弦定理;三角形的面积公式。
点评:在椭圆的焦点三角形中(两个焦点和椭圆上一点构成的三角形),我们通常把椭圆的定义和余弦定理、三角形的面积公式联系到一块。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于点为右焦点,若,则椭圆的离心率为 (   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

q是第三象限角,方程x2+y2sinq=cosq表示的曲线是(    )

A.焦点在y轴上的双曲线B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在x轴上的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知双曲线的两个焦点分别为,则满足△的周长为的动点的轨迹方程为 (   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知抛物线的焦点为F,准线为l,点P为抛物线上一点,且,垂足为A,若直线AF的斜率为,则|PF|等于( )

A.B.4C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

曲线的焦点恰好是曲线的右焦点,且曲线与曲线交点连线过点,则曲线的离心率是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如果方程表示焦点在轴上的椭圆,则的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,已知椭圆方程为,A为椭圆的左顶点,B、C在椭圆上,若四边形OABC为平行四边形,且,则椭圆的离心率等于(     )

A、    B、    C、   D、

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知当椭圆的长轴、短轴、焦距依次成等比时称椭圆为“黄金椭圆”,请用类比的性质定义“黄金双曲线”,并求“黄金双曲线”的离心率为(      )

A.B.C.D.

查看答案和解析>>

同步练习册答案