分析 设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),利用平方差法与直线y=4x+m可求得x0=-m,y0=-3m,点M(x0,y0)在椭圆内部,将其坐标代入椭圆方程即可求得m的取值范围.
解答 解:∵$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,故3x2+4y2-12=0,
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),
则3x12+4y12-12=0,①
3x22+4y22-12=0,②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
即 3•2x0•(x1-x2)+4•2y0•(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$•$\frac{{x}_{0}}{{y}_{0}}$=-$\frac{1}{4}$.
∴y0=3x0,代入直线方程y=4x+m得x0=-m,y0=-3m;
因为(x0,y0)在椭圆内部,
∴3m2+4•(-3m)2<12,即3m2+36m2<12,
解得-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.
故答案为:-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$
点评 本题考查直线与圆锥曲线的综合问题,着重考查平方差法的应用,突出化归思想的考查,属于难题
科目:高中数学 来源: 题型:选择题
A. | 经过一条直线和这条直线外一点,有且只有一个平面 | |
B. | 经过两条相交直线,有且只有一个平面 | |
C. | 平面α与平面β相交,它们只有有限个公共点 | |
D. | 如果两个平面有三个不共线的公共点,那么这两个平面重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x | 3 | -2 | 4 | $\sqrt{3}$ |
y | $-2\sqrt{3}$ | 0 | -4 | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
B. | “若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0” | |
C. | 在△ABC中,A>B是cosA<cosB的必要不充分条件 | |
D. | 若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}$π | D. | $\frac{5}{6}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (-∞,$\frac{1}{4}$) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{4}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com