19£®ÏÂÁк¯Êý³ÆΪ˫Çúº¯Êý£ºË«ÇúÕýÏÒ£ºshx=$\frac{{e}^{x}-{e}^{-x}}{2}$£¬Ë«ÇúÓàÏÒ£ºchx=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬Ë«ÇúÕýÇУºthx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$£®
£¨1£©¶Ô±ÈÈý½Çº¯ÊýµÄÐÔÖÊ£¬ÇëÄãÕÒ³öËüÃǵÄÈý¸öÀàËÆÐÔÖÊ£»
£¨2£©ÇóË«ÇúÕýÏÒshxµÄµ¼Êý£¬²¢ÇóÔÚµãx=0´¦µÄÇÐÏß·½³Ì£®

·ÖÎö £¨1£©¶ÔÕÕË«Çúº¯ÊýµÄ¶¨ÒåºÍÈý½Çº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉµÃµ½Èý¸öÀàËÆÐÔÖÊ£»
£¨2£©Çó³öË«ÇúÕýÏҵĵ¼Êý£¬¿ÉµÃÇÐÏßµÄбÂʺÍÇе㣬Óɵãбʽ·½³Ì¿ÉµÃÇÐÏߵķ½³Ì£®

½â´ð ½â£º£¨1£©ÓÉË«ÇúÕýÏÒ£ºshx=$\frac{{e}^{x}-{e}^{-x}}{2}$£¬Ë«ÇúÓàÏÒ£ºchx=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬Ë«ÇúÕýÇУºthx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$£®
¿ÉµÃthx=$\frac{shx}{chx}$£¬ch2x-sh2x=1£¬sh2x=2shx•chx£»
£¨2£©£¨shx£©¡ä=£¨$\frac{{e}^{x}-{e}^{-x}}{2}$£©¡ä=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬
¿ÉµÃÔÚµãx=0´¦µÄÇÐÏßбÂÊΪ$\frac{{e}^{0}+{e}^{0}}{2}$=1£¬ÇеãΪ£¨0£¬0£©£¬
ËùÒÔÇÐÏß·½³ÌΪy=x£®

µãÆÀ ±¾Ì⿼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏߵķ½³Ì£¬Í¬Ê±¿¼²éË«Çúº¯ÊýµÄÐÔÖÊ£¬×¢ÒâÔËÓÃÀà±È˼Ï룬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±ÏßÓëÆä½»ÓÚA£¬BÁ½µã£¬|AF|£¾|BF|£¬Èç¹û|AF|=5£¬ÄÇô|BF|=£¨¡¡¡¡£©
A£®$\frac{{3\sqrt{5}}}{2}$B£®$\frac{5}{4}$C£®$\frac{5}{2}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¸´ÊýzÂú×ãz=£¨5+2i£©2£¬ÔòzµÄ¹²éÊýÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¶þ´Îº¯Êýy=f£¨x£©µÄͼÏóµÄ¶¥µã×ø±êΪ$£¨{-1£¬-\frac{1}{3}}£©$£¬ÇÒ¹ý×ø±êÔ­µãO£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬µã£¨n£¬Sn£©£¨n¡ÊN*£©ÔÚ¶þ´Îº¯Êýy=f£¨x£©µÄͼÏóÉÏ£®
£¨1£©ÇóÊýÁÐ{an}µÄ±í´ïʽ£»
£¨2£©Éèbn=an•an+1cos£¨n+1£©¦Ð£¨n¡ÊN*£©£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÈôTn¡Ým2¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÕâÑùµÄһЩÏan1£¬an2£¬an3£¬¡­nank£¬¡­£¨1=n1£¼n2£¼n3£¼¡­£¼nk£¼¡­k¡ÊN*£©£¬ÕâЩÏîÄܹ»ÒÀ´Î¹¹³ÉÒÔa1ΪÊ×Ïq£¨0£¼q£¼5£¬q¡ÊN*£©Îª¹«±ÈµÄµÈ±ÈÊýÁÐ{ank}£¿Èô´æÔÚ£¬Ð´³önk¹ØÓÚkµÄ±í´ïʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÖ±Ïßl¾­¹ýµãP£¨-2£¬5£©£¬ÇÒбÂÊΪ$-\frac{3}{4}$£¬ÈôÖ±ÏßmÓëlƽÐÐÇÒÁ½Ö±Ïß¼äµÄ¾àÀëΪ3£¬ÔòÖ±ÏßmµÄ·½³ÌΪ3x+4y+1=0£¬»ò 3x+4y-29=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬$£¨{n^2}+2n£©£¨{a_{n+1}}-{a_n}£©=1£¨n¡Ê{N^*}£©$£¬ÔòͨÏʽan=$\frac{7}{4}-\frac{2n+1}{2n£¨n+1£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚµ÷²éÄÐÅ®³Ë¿ÍÊÇ·ñÔλúµÄÇé¿öÖУ¬ÒÑÖªÄг˿ÍÔλúΪ28ÈË£¬²»»áÔλúµÄÒ²ÊÇ28ÈË£¬¶øÅ®³Ë¿ÍÔλúΪ28ÈË£¬²»»áÔλúµÄΪ56ÈË£¬
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£»
£¨2£©ÅжÏÊÇ·ñÄÜÓÐ95%µÄ°ÑÎÕ˵ÔλúÓëÐÔ±ðÓйأ¿
P£¨K2¡Ýk0£©0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¹ØÓÚº¯Êý$f£¨x£©=4sin£¨{2x+\frac{¦Ð}{3}}£©£¨{x¡ÊR}£©$£¬ÓÐÏÂÁÐ˵·¨£º
¢Ùº¯Êýy=f£¨x£©µÄ±í´ïʽ¿ÉÒÔ¸ÃдΪ$y=4cos£¨{2x-\frac{¦Ð}{6}}£©$£»
¢Úº¯Êýy=f£¨x£©ÊÇÒÔ2¦ÐΪ×îСÕýÖÜÆÚµÄÖÜÆÚº¯Êý£»
¢Ûº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚµã$£¨{-\frac{¦Ð}{6}£¬0}£©$¶Ô³Æ£»
¢Üº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{6}$¶Ô³Æ£»
¢Ýº¯Êýy=f£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºóµÃµ½µÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£®ÆäÖÐÕýÈ·µÄÊÇ¢Ù¢Û£®£¨ÌîÉÏËùÓÐÄãÈÏΪÕýÈ·µÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôa£¾3£¬Ôò·½³Ìx3-ax2+1=0ÔÚÇø¼ä£¨0£¬2£©ÉϵÄʵ¸ù¸öÊýÊÇ£¨¡¡¡¡£©
A£®3 ¸öB£®2 ¸öC£®1¸öD£®0¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸