精英家教网 > 高中数学 > 题目详情

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为


  1. A.
    4
  2. B.
    -数学公式
  3. C.
    2
  4. D.
    -数学公式
A
分析:欲求曲线y=f(x)在点(1,f(1))处切线的斜率,即求f′(1),先求出f′(x),然后根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1求出g′(1),从而得到f′(x)的解析式,即可求出所求.
解答:f′(x)=g′(x)+2x.
∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,
∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,
∴y=f(x)在点(1,f(1))处切线斜率为4.
故选A.
点评:本题主要考查了利用导数研究曲线上某点切线方程,直线的斜率等有关基础知识,考查运算求解能力、推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、设函数f(x)=g(2x-1)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=g(x)+cosx,曲线y=g(x)在点A(
π
2
,  g(
π
2
))
处的切线方程为y=2x+1,则曲线y=f(x)在点B(
π
2
,  f(
π
2
))
处切线的方程为
y=x+
π
2
+1
y=x+
π
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=g(x)+sinx,曲线y=g(x)在点A(
π
2
,g(
π
2
))
处的切线方程为y=2x+1,则曲线y=f(x)在点B(
π
2
,f(
π
2
))
处切线的方程为
y=2x+2
y=2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为-
1
2

②关于x的不等式(a-3)x2<(4a-2)x对任意的a∈(0,1)恒成立,则x的取值范围是(-∞,-1]∪[
2
3
,+∞)

③变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则r2<0<r1
④下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x 3 4 5 6
y 2.5 3 4 4.5
根据上表提供的数据,得出y关于x的线性回归方程为y=a+0.7x,则a=-0.35;
以上命题正确的个数是(  )

查看答案和解析>>

同步练习册答案