精英家教网 > 高中数学 > 题目详情

【题目】某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为= (单位:万元),其中是产品售出的数量(单位:百件).

(1)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量的函数,求;

(2)当年产量是多少时,工厂所得利润最大?

【答案】(1)=;(2)年产量500件时,工厂所得利润最大

【解析】试题分析:

(1)由题意将函数的解析式写成分段函数的形式: =

(2)结合(1)中求得的函数解析式可得年产量500件时,工厂所得利润最大.

试题解析:

(1)利润=

(2) 对称轴,

,所以当x=5y有最大值10.75.

x>5,是减函数,

所以,x=6y有最大值10.50.

综上:年产量500件时,工厂所得利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设复数z=2m+4-m2i,当实数m取何值时,复数z对应的点:

1位于虚轴上?

2位于一、三象限

3位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过定点P(0,1),且与直线l1x3y100l22xy80分别交于AB两点.若线段AB的中点为P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F为双曲线 =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,如图.

1求证:平面AB1D1∥平面C1BD;

2试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

试求:(1yx之间的回归方程;

2)当使用年限为10年时,估计维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 )的图象关于直线对称,且图像上相邻两个最高点的距离为

(1)求函数的解析式以及它的单调递增区间;

(2)是否存在实数,满足不等式?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.

查看答案和解析>>

同步练习册答案