精英家教网 > 高中数学 > 题目详情

【题目】已知,.

(1) 的单调区间;

(2) ,求满足的实数的取值集合.

【答案】(1) 时,上单调递增;当时,的单调递增区间为,单调递减区间为;当时,的单调递增区间为,单调递减区间为

(2)

【解析】(1)由可得,(1分)

时,,上单调递增;

时,令可得,令可得,

的单调递增区间,单调递减区间

时,令可得,令可得,

的单调递增区间,单调递减区间.(4分)

综上可得,当时,上单调递增;当时,的单调递增区间,单调递减区间;当时,的单调递增区间,单调递减区间.(5分)

(2),,

,则,

上是增函数,又,

,,

上是减函数,上是增函数,

,当且仅当取等号.(9分)

由(1)可知,当,上是增函数,上是减函数,

,,当且仅当时取等号,

,,当且仅当,时取等号,

,当且仅当取等号.

即当且仅当,,

∴满足的实数的取值集合是.(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准如下:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知某学校学生的原始成绩均分布在[50,100]内,为了了解该校学生的成绩,抽取了50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出样本频率分布直方图如图所示.

(Ⅰ)求图中x的值,并根据样本数据估计该校学生学业水平测试的合格率;

(Ⅱ)在选取的样本中,从70分以下的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中成绩为D等级的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为丰富居民节日活动,组织了迎新春象棋大赛,已知由1,2,3号三位男性选手和4,5号两位女性选手组成混合组参赛.已知象棋大赛共有三轮,设三位男性选手在一至三轮胜出的概率依次是;两名女性选手在一至三轮胜出的概率依次是.

(Ⅰ)若该组五名选手与另一组选手进行小组淘汰赛,每名选手只比赛一局,共五局比赛,求该组两名女性选手的比赛次序恰好不相邻的概率;

(Ⅱ)若一位男性选手因身体不适退出比赛,剩余四人参加个人比赛,比赛结果相互不影响,设表示该组选手在四轮中胜出的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行节日促销活动,消费满一定数额即可获得一次抽奖机会,抽奖这可以从以下两种方式中任选一种进行抽奖.

抽奖方式①:让抽奖者随意转动如图所示的圆盘,圆盘停止后指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即中奖.

抽奖方式②:让抽奖者从装有3个白球和3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即中奖.

假如你是抽奖者,为了让中奖的可能性大,你应该选择哪一种抽奖方式?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)试判断f (x)的单调性,并证明你的结论;
(2)若f (x)为定义域上的奇函数,求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且当x≥0时, ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,则实数t的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别,设点,=2.

(1)求椭圆C的方程;

(2)已知四边形MNPQ的四个顶点均在曲线C上,且MQ∥NP,MQ⊥x轴,若直线MN和直线QP交于点S(4,0).判断四边形MNPQ两条对角线的交点是否为定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:(1)函数f(x)在[0,+∞)上是增函数,在(﹣∞,0)上也是增函数,所以f(x)在R上是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)函数y=lg10x和函数y=elnx表示相同函数.其中正确命题的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足;数列的前项和为,且满足 .

(1)求数列的通项公式;

(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.

查看答案和解析>>

同步练习册答案