精英家教网 > 高中数学 > 题目详情
3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵0<a=2${\;}^{-\frac{1}{3}}$<1,b=log20.7<0,c=log23>1,
∴c>a>b,
故选:C.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2+2x<0},B={x|($\frac{1}{2}$)x-2≥0},则A∩∁RB=(  )
A.(-2,-1)B.(-1,0)C.(-2,-1]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,首项a1=-1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)设cn=(-1)nan,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过右焦点F且斜率为1的直线交椭圆C于A,B两点,设M椭圆C上任意一点,且$\overrightarrow{OM}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ+μ的取值范围为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点(1,1)且$\frac{b}{a}$=$\sqrt{2}$的双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)判断并用定义证明函数f(x)的单调性;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下,解不等式:f(log${\;}_{\frac{1}{3}}$x)+f(1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列几个说法:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行.其中正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设区域D:{(x,y)|x+y≤1,x-y≥0,y≥0}.
(Ⅰ)在直角坐标系中作出区域D的图形并求出其面积;
(Ⅱ)若z=ax+by(b>a>0),(x,y)∈D的最大值为1,求$\frac{4}{a}$+$\frac{1}{b}$的最小值;
(Ⅲ)若(m,n)∈D,比较双曲线C1:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{(n-1)^{2}}$=1和C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{(m-1)^{2}}$=1的离心率e1,e2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{\frac{x}{{x}^{2}+3x+1}}$的值域是[0,$\frac{\sqrt{5}}{5}$]∪[1,+∞).

查看答案和解析>>

同步练习册答案