精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn=1﹣nan(n∈N*
(1)计算a1 , a2 , a3 , a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

【答案】
(1)解:计算得
(2)解:猜测: .下面用数学归纳法证明

①当n=1时,猜想显然成立.

②假设n=k(k∈N*)时,猜想成立,

那么,当n=k+1时,Sk+1=1﹣(k+1)ak+1

即Sk+ak+1=1﹣(k+1)ak+1

所以

从而

即n=k+1时,猜想也成立.

故由①和②,可知猜想成立


【解析】(1)由Sn与an的关系,我们从n=1依次代入整数值,即可求出a1 , a2 , a3 , a4;(2)由a1 , a2 , a3 , a4的值与n的关系,我们归纳推理出数列的通项公式,观察到它们是与自然数集相关的性质,故可采用数学归纳法来证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若奇函数f(x)在其定义域R上是减函数,且对任意的x∈R,不等式f(cos2x+sinx)+f(sinx﹣a)≤0恒成立,则a的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各图是正方体或正四面体,P,Q,R,S分别是所在棱的中点,这四个点中不共面的一个图是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,Sn表示前n项和,且Sn , Sn+1 , 2S1成等差数列.
(1)计算S1 , S2 , S3的值;
(2)根据以上结果猜测Sn的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求函数f(x)的最小正周期和单调减区间;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个求导运算,其中正确的个数是( ) ①(x+ )′=1+
②(log2x)′=
③(3x)′=3xlog3e;
④(x2cos2x)′=﹣2xsin2x.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(3ωx+ ),其中ω>0
(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;
(2)若f(x)在(0, ]上是增函数,求ω的最大值;
(3)当ω= 时,将函数f(x)的图象向右平移 个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为(
A.(0,+∞)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(﹣1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根据下列条件,求m值.
(1)z是实数;
(2)z是虚数;
(3)z是纯虚数;
(4)z=0.

查看答案和解析>>

同步练习册答案