精英家教网 > 高中数学 > 题目详情
如果△ABC外接圆半径为R,且2R(sin2A-sin2C)=(
2
a-b)sinB

(1)求角C的值
(2)求△ABC面积的最大值.
分析:(1)先根据正弦定理把2R(sin2A-sin2C)=(
2
a-b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C.
(2)根据三角形的面积公式求得三角形面积的表达式,利用两角和公式化简整理后,根据角A的范围求得面积的最大值
解答:解:(1)由2R(sin2A-sin2C)=(
2
a-b)sinB,
根据正弦定理得a2-c2=(
2
a-b)b=
2
ab-b2
∴cosC=
a2+b2-c2
2ab
=
2
2

∴角C的大小为45°,
(2)∵S=
1
2
absinC=
1
2
×
2
2
ab
=
2
R2sinAsinB=
2
R2sinAsin(135°-A)
=
2
R2sinA(sin135°cosA-cos135°sinA)
=R2(sinAcosA+sin2A)
=R2
1+sin2A-cos2A
2

=R2
1+
2
sin(2A-
π
4
)
2

∴当2A=135°,即A=67.5°时,Smax=
2
+1
2
R2
点评:本题主要考查了正弦定理和余弦定理的应用.解三角形问题过程中常需要利用正弦定理和余弦定理完成边角问题的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省兰州一中高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

同步练习册答案