A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.
解答 解:在区间(0,1)上随机取两个数x,y,满足$\left\{\begin{array}{l}{0<x<1}\\{0<y<1}\end{array}\right.$,对应区域OABC的面积为1,
满足y≥2x,对应区域为△OAD如图,
其中D($\frac{1}{2}$,1),则对应的面积的面积S=$\frac{1}{2}×1×\frac{1}{2}$=,$\frac{1}{4}$,
∴所求的概率为P=$\frac{\frac{1}{4}}{1}$=$\frac{1}{4}$.
故选:B
点评 本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,利用线性规划的知识进行求解是解决本题的关键.属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0° | B. | 45° | C. | 90° | D. | 180° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com