14£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓ­À´·¢Õ¹µÄлúÓö£®2016Äê˫ʮһÆڼ䣬ij¹ºÎïƽ̨µÄÏúÊÛÒµ¼¨¸ß´ï516ÒÚÈËÃñ±Ò£®Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÍƳöÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñµÄÆÀ¼ÛÌåϵ£®ÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³ö200´Î³É¹¦½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ0.6£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ0.75£¬ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®
£¨¢ñ£©ÏÈÍê³É¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£¬ÔÙÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ¿
£¨¢ò£©ÈôÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°¶ÔÉÌÆ·ºÃÆÀ¡°ºÍ¡°¶ÔÉÌÆ·²»ÂúÒâ¡°Öгé³ö5´Î½»Ò×£¬ÔÙ´ÓÕâ5´Î½»Ò×ÖÐÑ¡³ö2´Î£®ÇóÇ¡ÓÐÒ»´ÎΪ¡±ÉÌÆ·ºÃÆÀ¡±µÄ¸ÅÂÊ£®
¸½ÁÙ½çÖµ±í£º
P£¨K2¡Ýk£© 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2µÄ¹Û²âÖµ£º$k=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©
¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º
¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀa=80b=40120
¶ÔÉÌÆ·²»ÂúÒâc=70d=1080
ºÏ¼Æ15050n=200

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÁгö¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£¬´úÈ빫ʽÇóµÃk2µÄÖµ£¬¶ÔÓ¦Êý±íµÃ´ð°¸£»
£¨¢ò£©È·¶¨»ù±¾Ê¼þµÄ¸öÊý£¬¼´¿ÉÇóÇ¡ÓÐÒ»´ÎΪ¡±ÉÌÆ·ºÃÆÀ¡±µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨¦©£©ÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±íÈçÏ£º

¶Ô·þÎñºÃÆÀ¶Ô·þÎñ²»ÂúÒâºÏ¼Æ
¶ÔÉÌÆ·ºÃÆÀ8040120
¶ÔÉÌÆ·²»ÂúÒâ701080
ºÏ¼Æ15050200
¡­£¨2·Ö£©$k=\frac{{200¡Á{{£¨80¡Á10-70¡Á40£©}^2}}}{150¡Á50¡Á80¡Á120}¡Ö11.111£¾10.828$¡­£¨5·Ö£©
¹ÊÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏ£¬ÈÏΪÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ®¡­£¨6·Ö£©
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÉÌÆ·ºÃÆÀµÄ½»Ò׳é³ö3´Î£¬¼ÇΪA1£¬A2£¬A3£®¶ÔÉÌÆ·²»ÂúÒâµÄ½»Ò׳é³ö2´Î£¬¼ÇΪB1£¬B2£¬¡­£¨7·Ö£©
ËùÒÔ£¬Îå´Î½»Ò׳é³öÁ½´ÎµÄ»ù±¾Ê¼þÓУºA1A2£¬A1A3£¬A1B1£¬A1B2£¬A2A3£¬A2B1£¬A2B2£¬A3B1£¬A3B2£¬B1B2£¬¹²10¼þ£®¡­£¨10·Ö£©
Ç¡ÓÐÒ»´ÎΪÉÌÆ·ºÃÆÀµÄ¸ÅÂÊΪ$\frac{3}{5}$¡­£¨12·Ö£©

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éͳ¼ÆÓë¸ÅÂʵÄÏà¹Ø֪ʶ£¬¶Ô¿¼ÉúµÄ¶ÔÊý¾Ý´¦ÀíµÄÄÜÁ¦ÓкܸßÒªÇó£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®²»µÈʽ×é$\left\{\begin{array}{l}x£¨x+2£©£¾0\\|x|£¼1\end{array}\right.$µÄ½â¼¯Îª£¨0£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÇóÖ¤£ºÈôa2+2ab+b2+a+b-2¡Ù0£¬Ôòa+b¡Ù1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýy=log${\;}_{\frac{1}{3}}$£¨-x2+2x£©  µÄµ¥µ÷¼õÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬+¡Þ£©C£®£¨0£¬1£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈôµãOºÍµã$F£¨-\sqrt{3}£¬0£©$·Ö±ðÊÇË«ÇúÏß$\frac{x^2}{a^2}-{y^2}={1_{\;}}$£¨a£¾0£©µÄ¶Ô³ÆÖÐÐĺÍ×󽹵㣬µãPΪ˫ÇúÏßÓÒÖ§ÉÏÈÎÒâÒ»µã£¬Ôò$\frac{{{{|{PF}|}^2}}}{{{{|{OP}|}^2}+1}}$µÄÈ¡Öµ·¶Î§Îª£¨1£¬£¨1£¬$\frac{5+2\sqrt{6}}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôx£¾0£¬y£¾0£¬x+4y+2xy=7£¬Ôòx+2yµÄ×îСֵÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨12+4$\sqrt{2}$£©¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªËıßÐÎABCDÖУ¬AB¡ÎCD£¬AD=AB=BC=$\frac{1}{2}$CD=2£¬EΪDCÖе㣬Á¬½ÓAE£¬½«¡÷DAEÑØAE·­ÕÛµ½¡÷D1AE£®
£¨1£©Ö¤Ã÷£ºBD1¡ÍAE£»
£¨2£©ÈôCD1=$\sqrt{10}$£¬Çó¶þÃæ½ÇD1-AB-CµÄƽÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒc=2£¬2sinA=$\sqrt{3}$acosC£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©Èô2sin2A+sin£¨2B+C£©=sinC£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸