精英家教网 > 高中数学 > 题目详情

【题目】某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:

月份

用气量(立方米)

煤气费()

1

4

4.00

2

25

14.00

3

35

19.00

该市煤气收费的方法是:煤气费=基本费+超额费+保险费.

若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元.

(1)根据上面的表格求ABC的值;

(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元.

【答案】(1);(2).

【解析】试题分析:(1)由月的用气量没有超过最低额度,可求得,再由月的用气量超过了最低额度,列出方程组,即可求得

(2)由题意,当时,需付费用为元,当时,得到需付费用,即可得到煤气费用的分段函数.

试题解析:

(1)1月的用气量没有超过最低额度A,所以3+C=4C=1,

2,3月的用气量超过了最低额度A,所以解得BA=5.

(2)当x≤5时,需付费用为3+1=4元.

x>5时,需付费用为4+(x-5)×x元,

所以应交的煤气费y

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市出租车的收费标准是:3千米以内(含3千米),收起步价8元;3千米以上至8千米以内(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.

(1)计算某乘客搭乘出租车行驶7千米时应付的车费;

(2)试写出车费 (元)与里程 (千米)之间的函数解析式并画出图像;

(3)小陈周末外出,行程为10千米,他设计了两种方案:

方案1:分两段乘车,先乘一辆行驶5千米,下车换乘另一辆车再行5千米至目的地

方案2:只乘一辆车至目的地,试问:以上哪种方案更省钱,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为定义在 上的偶函数,当 时,有 ,且当 时, ,给出下列命题:
的值为
②函数 在定义域上为周期是2的周期函数;
③直线 与函数 的图像有1个交点;
④函数 的值域为 .
其中正确的命题序号有 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中
(1)设函数 ,求函数 的单调区间;
(2)若存在 ,使得 成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABCA1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABCFF1分别是ACA1C1的中点.

求证:(1)平面AB1F1平面C1BF

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一栋楼有6个单元,小王和小李均住在此楼内,他们住在同一单元的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?

(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,解方程

(2)当时,若不等式上恒成立,求实数a的取值范围;

(3)若a为常数,且函数在区间上存在零点,求实数b的取值范围

查看答案和解析>>

同步练习册答案