精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=-x3+x2+b,g(x)=aln x.

(1)若f(x)在 上的最大值为,求实数b的值;

(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

【答案】(1)b=0; (2)a≤-1.

【解析】

(1)由f(x)=﹣x3+x2+b,得f′(x)=﹣3x2+2x=﹣x(3x﹣2),令f′(x)=0,得x=0或x=.由此列表讨论能求出b=0.

(2)由g(x)≥﹣x2+(a+2)x,得(x﹣lnx)a≤x2﹣2x.由已知得a≤(min.由此利用构造法和导数性质能求出a≤﹣1.

(1)由f(x)=-x3+x2+b,得f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.列表如下:

x

0

f′(x)

0

0

f(x)

f

极小值

极大值

由f+b,f+b,∴f>f,即函数f(x)在上的最大值为f+b=,∴b=0.

(2)由g(x)≥-x2x,得a≤x2-2x.∵x∈[1,e],∴ln x≤1≤x,且等号不能同时成立,∴ln x<x,即x-ln x>0,∴a≤恒成立,即a≤.令t(x)=,x∈[1,e],求导得,t′(x)=,当x∈[1,e]时,x-1≥0,ln x≤1,x+2(1-ln x)>0,从而t′(x)≥0,∴t(x)在[1,e]上为增函数,∴t(x)min=t(1)=-1,∴a≤-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;

单位对学习雷锋精神后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:

损坏餐椅数

未损坏餐椅数

学习雷锋精神

50

150

200

学习雷锋精神

30

170

200

80

320

400

1求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

2请说明是否有975%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9﹣S7=41,a1=b2 , a3=b3
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn
(3)设cn= ,问是否存在正整数m,使得cmcm+1cm+2+8=3(cm+cm+1+cm+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的偶函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,当x1 , x2∈[0,2]且x1≠x2时,都有 <0,给出下列四个命题:
①f(﹣2)=0;
②直线x=﹣4是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[4,6]上为增函数;
④函数y=f(x)在(﹣8,6]上有四个零点.
其中所有正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的s的值是(  )

A. 3 B. -3 C. -4 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,已知成绩在130~140分数段的人数为2.

(1)求这组数据的平均数M.

(2)现根据初赛成绩从第一组和第五组(从低分段至高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶小组.若选出的两人的成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ax2+bx,(a,b∈R).
(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;
(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;
(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?

查看答案和解析>>

同步练习册答案