精英家教网 > 高中数学 > 题目详情

【题目】在①离心率,②椭圆过点,③面积的最大值为,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.

设椭圆的左、右焦点分别为,过且斜率为的直线交椭圆于两点,已知椭圆的短轴长为,________.

1)求椭圆的方程;

2)若线段的中垂线与轴交于点,求证:为定值.

【答案】1)选①,2)证明见解析

【解析】

1)选①,根据题意,得到,求解,即可得出结果;

2)先讨论时,求出;再讨论时,设直线的方程为,联立直线与椭圆方程,根据韦达定理,以及弦长公式等,求出,再求出线段的中垂线方程,得到,求出,进而可求出结果.

1)选①,由题意可得:,解得

所以所求椭圆的方程为

2)(i)当时,

ii)当时,由题意可得:.

设直线的方程为,设

整理得:

显然,且

所以

所以线段的中点

则线段的中垂线方程为

,可得,即,又

所以

所以,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设椭圆的左焦点为,左准线为为椭圆上任意一点,直线,垂足为,直线交于点

(1)若,且,直线的方程为.①求椭圆的方程;②是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

(2)设直线与圆交于两点,求证:直线均与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知抛物线的焦点Fy轴上,其准线与双曲线的下准线重合.

1)求抛物线的标准方程;

2)设A()(0)是抛物线上一点,且AFB是抛物线的准线与y轴的交点.过点A作抛物线的切线l,过点Bl的平行线l′,直线l′与抛物线交于点MN,求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区有居民人,为了迎接第十一个“全民健身日”的到来,居委会从中随机抽取了名居民,统计了他们本月参加户外运动时间(单位:小时)的数据,并将数据进行整理,分为组:,得到如图所示的频率分布直方图.

(Ⅰ)试估计该社区所有居民中,本月户外运动时间不小于小时的人数;

(Ⅱ)已知这名居民中恰有名女性的户外运动时间在,现从户外运动时间在的样本对应的居民中随机抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为,离心率为,它的一个顶点恰好是抛物线的焦点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过动点的直线交轴的负半轴于点,交C于点(在第一象限),且是线段的中点,过点作x轴的垂线交C于另一点,延长线交C于点.

(i)设直线的斜率分别为,证明:

(ii)求直线的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量=λ+μ,则λ+μ的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a7a210,且a1a6a21依次成等比数列.

1)求数列{an}的通项公式;

2)设bn,数列{bn}的前n项和为Sn,若Sn,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点上且其横坐标为1,以为圆心、为半径的圆与的准线相切.

(1)求的值;

(2)过点的直线交于两点,以为邻边作平行四边形,若点关于的对称点在上,求的方程.

查看答案和解析>>

同步练习册答案