精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为,椭圆上的点到左焦点的最小值为.

(1)求椭圆的方程;

(2)已知直线轴交于点,过点的直线交于两点,点为直线上任意一点,设直线与直线交于点,记的斜率分别为,则是否存在实数,使得恒成立?若是,请求出的值;若不是,请说明理由.

【答案】(1) (2)见解析

【解析】

1)根据题干列出式子,结合求解即可;(2)设出直线方程,联立直线和椭圆方程,设,根据韦达定理化简得到结果.当直线轴重合时验证即可.

(1)椭圆上的左顶点到左焦点的距离最小为

结合题干条件得到,解之得

,知故椭圆的方程为:

(2)设

若直线轴不重合时,设直线的方程为,点

将直线代入椭圆方程整理得:

,显然,则

若直线轴重合时,则,此时

,故.

综上所述,存在实数符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A. 互联网行业从业人员中90后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的20%

C. 互联网行业中从事运营岗位的人数90后比80前多

D. 互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程;

(2)求过点且与的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,,平面平面为棱上一点(不与重合),平面交棱于点.

1)求证:

2)若二面角的余弦值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线.给出下列结论:

①曲线关于原点对称;

②曲线上任意一点到原点的距离不小于1;

③曲线只经过个整点(即横纵坐标均为整数的点).

其中,所有正确结论的序号是( )

A.①②B.C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线上横坐标为的点到焦点的距离为.

(Ⅰ)求抛物线的方程及其准线方程;

(Ⅱ)过的直线交抛物线于不同的两点,交直线于点,直线交直线于点. 是否存在这样的直线,使得? 若不存在,请说明理由;若存在,求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:,过椭圆右焦点的最短弦长是,且点在椭圆上.

1)求该椭圆的标准方程;

2)设动点满足:,其中,是椭圆上的点,直线与直线的斜率之积为,求点的轨迹方程并判断是否存在两个定点,使得为定值?若存在,求出定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射手射击1,击中目标的概率是0.9,他连续射击4,且各次射击是否击中目标相互之间没有影响,有下列结论:

①他第3次击中目标的概率是0.9;

②他恰好击中目标3次的概率是;

③他至少击中目标1次的概率是;

④他至多击中目标1次的概率是

其中正确结论的序号是(

A.①②③B.①③

C.①④D.①②

查看答案和解析>>

同步练习册答案