【题目】已知函数是R上的偶函数,其中e是自然对数的底数.
(1)求实数的值;
(2)探究函数在上的单调性,并证明你的结论;
(3)若函数有零点,求实数m的取值范围.
【答案】(1); (2)见解析; (3).
【解析】
(1)根据偶函数的定义得到在R上恒成立,可得;(2)由(1)得在上单调递增,然后根据单调性的定义进行证明即可;(3)
由条件得,设,则问题转化为方程在区间上有实数根,然后根据方程根的分布的知识求解即可得到所求范围.
(1)∵函数是偶函数,
∴,即,
整理得在R上恒成立,
∴.
(2)函数在上单调递增.证明如下:
当时,.
设,
则
,
∵,
∴,即,
∴,
∴,
∴函数在上单调递增.
(3)由题意得
.
令,当且仅当时等号成立,
且,
∵函数有零点,
∴函数在上有零点.
①当在上只有一个零点时,
则,即,
解得;
②当在上有两个零点时,
则,即,
解得.
综上可得.
∴当函数有零点时,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
求证:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 :若 ,则 ,下列说法正确的是( )
A. 命题 的否命题是“若 ,则 ”
B. 命题的逆否命题是“若 ,则”
C. 命题是真命题
D. 命题的逆命题是真命题
【答案】D
【解析】A. 命题 的否命题是若
B. 命题的逆否命题是“若,则
C. 命题是假命题,比如当x=-3,就不满足条件,故选项不正确.
D. 命题的逆命题是若是真命题.
故答案为:D.
【题型】单选题
【结束】
9
【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 的内角 , , 所对的边分别为 , , ,且 , .
(1)当 时,求 的值;
(2)当的面积为 时,求的周长.
【答案】(1) (2)8
【解析】试题分析:(1)由 , ,由正弦定理得到;(2)根据面积公式得到,再由余弦定理得到,进而得到.
解析:
(1)因为 ,所以
由正弦定理 ,可得
(2)因为 的面积
所以
由余弦定理
得 ,即
所以 ,
所以
所以, 的周长为
【题型】解答题
【结束】
18
【题目】如图,在四棱锥 中,底面 是平行四边形, , , , 底面.
(1)求证: 平面 ;
(2)若 为 的中点,求直线 与平面 所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,顶点A(a,0),B(0,b),中心O到直线AB的距离为 .
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足: ,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣ ,若Q(λ,μ)为一动点,E1(﹣ ,0),E2( ,0)为两定点,求|QE1|+|QE2|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com