已知函数f(x)=ax2-|x|+2a-1(a为实常数).
(1)若a=1,作函数f(x)的图象;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设h(x)=,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.
(1)
(2)g(a)=(3)
【解析】(1)当a=1时,f(x)=x2-|x|+1=作图如下.
(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.
若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.
若a≠0,则f(x)=a+2a--1,f(x)图象的对称轴是直线x=.
当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.
当0<<1,即a>时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2.
当1≤≤2,即≤a≤时,g(a)=f=2a--1.
当>2,即0<a<时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.
综上可得g(a)=
(3)当x∈[1,2]时,h(x)=ax+-1,在区间[1,2]上任取x1、x2,且x1<x2,
则h(x2)-h(x1)=
=(x2-x1)=(x2-x1).
因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.
因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,
即ax1x2>2a-1.
当a=0时,上面的不等式变为0>-1,即a=0时结论成立.
当a>0时,x1x2>,由1<x1x2<4,得≤1,解得0<a≤1.
当a<0时,x1x2<,由1<x1x2<4,得≥4,解得-≤a<0.
所以实数a的取值范围为
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第4课时练习卷(解析版) 题型:解答题
判断下列函数的奇偶性:
(1)f(x)=x4+x;
(2)f(x)=
(3)f(x)=lg(x+).
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第14课时练习卷(解析版) 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<时,f>f;
(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:<0.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第14课时练习卷(解析版) 题型:填空题
已知函数f(x)=2x2+m的图象与函数g(x)=ln|x|的图象有四个交点,则实数m的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第14课时练习卷(解析版) 题型:填空题
若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:解答题
某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.
(1)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
(3)若要求制冷效果最好,应怎样设计薄板的长和宽?
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:解答题
已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第10课时练习卷(解析版) 题型:填空题
若关于x的方程=kx2有四个不同的实数根,则实数k的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com