精英家教网 > 高中数学 > 题目详情
15.已知三点A(a,0),B(0,a+4),C(1,3),若过点C的直线l平行于直线AB,且直线l过原点,则实数a的值是-1.

分析 根据两直线平行,斜率存在且相等,列出方程求出a的值.

解答 解:∵点A(a,0),B(0,a+4),C(1,3),
且过点C的直线l平行于直线AB,直线l过原点,
∴$\frac{(a+4)-0}{0-a}$=$\frac{3-0}{1-0}$,
解得a=-1.
故答案为:-1.

点评 本题考查了两条直线平行时斜率相等的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若关于x的方程ax2+bx+c=0(a≠0)的两个实根为1或2,则函数f(x)=cx2+bx+a的零点为(  )
A.1,2B.-1,-2C.1,$\frac{1}{2}$D.-1,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.命题p:已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函数F(x)=f(x)+x-a有且仅有两个零点;命题q:在x∈[1,2]内,不等式x2+2ax-2>0恒成立,若p且q为真,求参数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求直线l1:2x+y-4=0关于直线l:x-y+2=0对称的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$|tan(2x-\frac{π}{4})|$的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)满足:f(x+y)=f(x)f(y)对任意实数x、y都成立,f(1)=$\frac{1}{2}$,当x>0时,0<f(x)<1.
(1)求f(-1)、f(-2)的值;
(2)求证:f(x)>0;
(3)若f(1-|2-t|)≤4时,不等式x2+tx-1≤0,求实数x取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求函数y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{1}{1-i}$+i,则复数z的模|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{10}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步练习册答案