精英家教网 > 高中数学 > 题目详情
11.函数y=$\frac{2}{\sqrt{x+1}}$的定义域是(-1,+∞).

分析 根据函数y的解析式,列出使解析式有意义的不等式,求出解集即可.

解答 解:∵函数y=$\frac{2}{\sqrt{x+1}}$,
∴$\sqrt{x+1}$≠0,
即x+1>0,
解得x>-1,
∴函数y的定义域是(-1,+∞).
故答案为:(-1,+∞).

点评 本题考查了利用函数的解析式求函数定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=3n+2n+1,则an=(  )
A.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$B.an=2×3n-1
C.an=2×3n-1+2D.an=$\left\{\begin{array}{l}{6,n=1}\\{2×{3}^{n-1}+2,n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn=($\frac{3}{2}$)n-1
(1)求数列{an}的通项公式;
(2)当bn=log${\;}_{\frac{3}{2}}$(3an+1)时,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设α∈R,f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)证明对任意实数a,f(x)为增函数.
(2)试确定a的值,使f(x)≤0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x+y-1=0,
(1)若直线l1过点(3,2)且l1∥l,求直线l1的方程;
(2)若直线l2过l与直线2x-y+7=0的交点,且l2⊥l,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f($\frac{1}{3}$)=1.
(1)求f(1)的值;
(2)若存在实数m,使得f(m)=2,求m的值;
(3)若f(x-2)>2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{1}{4}$,α∈($\frac{π}{2}$,π),则tanα=-$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知P={x|x2-$\frac{3}{2}$x+$\frac{1}{2}$≤0},S={x|x2-(2a+1)x+a(a+1)≤0}
(1)否存在实数a,使x∈P是x∈S的充要条件,若存在,求出a的范围;
(2)是否存在实数a,使x∈P是x∈S的必要不充分条件,若存在,求出a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的通项公式是an=n2+kn+4
(1)若k=-5,则数列中有多少项是负数?n为何值时,an有最小值.并求出最小值,
(2)对于n∈N*,都有an+1>an,求实数k的取值范围.

查看答案和解析>>

同步练习册答案