【题目】设函数f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.
(1)若a﹣3∈M,求实数a的取值范围;
(2)若[﹣1,1]M,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知斜三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA= ,且侧面ABB1A1⊥底面ABC. (Ⅰ)证明:B1C⊥AC1
(Ⅱ)若M为A1C1的中点,求二面角A﹣B1M﹣A1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f′(x),且满足xf′(x)+2f(x)>0,则不等式 的解集为( )
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 由椭圆短轴的一个端点与两个焦点构成一个等边三角形.它的面积为4 .
(1)求椭圆C的方程;
(2)已知动点B(m,n)(mn≠0)在椭圆上,点A(0,2 ),直线AB交x轴于点D,点B′为点B关于x轴的对称点,直线AB′交x轴于点E,若在y轴上存在点G(0,t),使得∠OGD=∠OEG,求点G的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 且S4=4S2 , a2n=2an+1﹣3.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足a1b1+a2b2+…+anbn=3﹣ ,求{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC= AD=2,CD=4
(1)求证:直线PA∥平面QMB;
(2)若二面角P﹣AD﹣C为60°,求直线PB与平面QMB所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com