【题目】已知命题p:方程x2+mx+1=0有两个不相等的实根;
命题q:函数f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定义域为R,
若“p∨q”为真,“p∧q”为假,求实数m的取值范围.
【答案】解:命题p:方程x2+mx+1=0有两个不相等的实根,
∴△=m2﹣4>0,解得m>2或m<﹣2
命题q:即不等式x2﹣2(m+1)x+m(m+1)>0对任意的实数x恒成立,
∴△=4(m+1)2﹣4m(m+1)<0,解得m<﹣1.
若“p∨q”为真,“p∧q”为假,
则p与q必然一真一假,
∴ 或 ,
解得m>2或﹣2≤m<﹣1.
∴实数m的取值范围是m>2或﹣2≤m<﹣1
【解析】先求得命题为真时实数m的取值范围,再利用命题p与命题q的真假列出不等式组,解不等式组即可求得实数m的取值范围.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
科目:高中数学 来源: 题型:
【题目】已知线段的端点的坐标是,端点在圆上运动.
(Ⅰ)求线段的中点的轨迹的方程;
(Ⅱ)设圆与曲线的两交点为,求线段的长;
(Ⅲ)若点在曲线上运动,点在轴上运动,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位;kg)数据,将数据分组如下表:
(1)在答题卡上完成频率分布表;
(2)重量落在中的频率及重量小于2.45的频率是多少?
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此,估计这100个数据的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若对x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点是直线上的一动点,过点作圆的切线,切点为.
(1)当切线的长度为时,求线段PM长度.
(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(3)求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为π,它的一个对称中心为(,0)
(1)求函数y=f(x)图象的对称轴方程;
(2)若方程f(x)=在(0,π)上的解为x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当前,网购已成为现代大学生的时尚。某大学学生宿舍4人参加网购,约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用分别表示这4个人中去淘宝网和京东商城购物的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】P为圆C1:x2+y2=9上任意一点,Q为圆C2:x2+y2=25上任意一点,PQ中点组成的区域为M,在C2内部任取一点,则该点落在区域M上的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com