精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-cosx,下列结论错误的是(  )
A、f(x)的最小正周期是2π
B、函数在区间[0,
π
2
]上是增函数
C、函数f(x)的图象关于直线x=0对称
D、函数f(x)是奇函数
考点:命题的真假判断与应用
专题:简易逻辑
分析:由函数f(x)=-cosx,可知:f(x)的最小正周期是2π,函数在区间[0,
π
2
]上是增函数,函数f(x)是偶函数其图象关于直线x=0对称.即可得出.
解答: 解:由函数f(x)=-cosx,
可知:f(x)的最小正周期是2π,函数在区间[0,
π
2
]上是增函数,函数f(x)是偶函数其图象关于直线x=0对称.
因此A.B.C.正确,而D是错位的.
故选:D.
点评:本题考查了余弦函数的性质,考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出如下五个结论:
①若△ABC为钝角三角形,则sinA<cosB.
②存在区间(a,b)使y=cosx为减函数而sinx<0
③函数y=2x3-3x+1的图象关于点(0,1)成中心对称
④y=cos2x+sin(
π
2
-x)既有最大、最小值,又是偶函数
⑤y=|sin(2x+
π
4
)|最小正周期为π
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:方程x2+y2+4mx-2y+5m=0表示圆,命题q:向量
a
=(m,-1,
2
)
的模小于2,若p∧q为真命题,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的是(  )
A、用简单随机抽样、系统抽样和分层抽样的方法抽取样本时,要求个体被抽取到的概率相等,但是在系统抽样中,如果不能平均分组时,除剔除的某些个体被抽取到的概率就和后面参与抽取的其它个体被抽取的概率不同
B、在频率分布直方图中,中位数左边和右边的直方图的面积相等
C、在相同条件下的重复试验中,某一随机事件出现的频率就是该随机事件的概率
D、在一定条件下,概率为0的事件一定是不可能事件

查看答案和解析>>

科目:高中数学 来源: 题型:

若把一个正方形用斜二测画法画出,有下列说法:
①所得图形一定是矩形;
②所得图形一定是平行四边形;
③所得图形一定是梯形;
④原正方形的中心一定是所得图形对角线的交点.
其中正确的是(  )
A、①②③④B、②④
C、③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=2,a1+a4=7
(1)求数列{an}的通项公式
(2)若数列{an}的前n项和为Sn,求S8

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2
sin2x是(  )
A、最小正周期为2π的偶函数
B、最小正周期为2π的奇函数
C、最小正周期为π的偶函数
D、最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一条直线与两条平行线中的一条垂直,那么它和另一条直线(  )
A、垂直B、平行C、异面D、相交

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三角形ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=3,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(1)求证:直线l∥BC;
(2)若直线l上一点Q满足BQ∥AC,求平面PAC与平面EQB的夹角的余弦值.

查看答案和解析>>

同步练习册答案