精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的首项a1=4,公差d>0,且a1,a5,a21分别是正数等比数列{bn}的b3b5b7项.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}对任意n*均有
c1
b1
+
c2
b2
+
+
cn
bn
=an+1
成立,设{cn}的前n项和为Tn,求Tn
(Ⅰ)∵a5=4+4d,a21=4+20d,且a1,a5,a21成等比数列,
∴(4+4d)2=4(4+20d),
整理得:d2=3d,
∵公差d>0,
∴d=3,
∴an=4+(n-1)×3=3n+1.
又b3=a1=4,b5=a5=16,
∴q2=4,
∵q>0,
∴q=2,
∴b1=
b3
q2
=1,
∴bn=2n-1
(Ⅱ)∵
c1
b1
+
c2
b2
+…+
cn
bn
=an+1,①
c1
b1
+
c2
b2
+…+
cn-1
bn-1
=an(n≥2),②
①-②:
cn
bn
=an+1-an=3,
∴cn=3bn=3•2n-1(n≥2),
又c1=b1a2=7,
∴cn=
7(n=1)
3•2n-1(n≥2)

∴Tn=c1+c2+…+cn=7+3•21+3•22+…+3•2n-1=7+3(21+22+…+2n-1)=7+
6(1-2n-1)
1-2
=3•2n+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2
(Ⅰ)设bn=an+1-2an,证明数列{bn}是等比数列
(Ⅱ)求数列{an}的通项公式.
(Ⅲ)设cn=2nbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对任意的自然数n,Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
=
10
11
,则n=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,组成一新数列{bn},则数列{bn}的前n项和为
(  )
A.Tn=2n2-nB.Tn=4n2+3nC.Tn=2n2-3nD.Tn=4n2-5n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}中,a1=2,点(an-1,an)满足y=2x-1,则a1+a2+…+a10=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}的各项均为正数,且a1+2a2=1,a
23
=4a2a6
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{
1
bn
}的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*).
(Ⅰ)求:a1,a2的值;
(Ⅱ)求:数列{an}的通项公式;
(Ⅲ)若数列{bn}的前n项和为Tn,且满足bn=nan,(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正项数列{an}的前n项的乘积等于Tn=(
1
4
)
n2-6n
(n∈N*),bn=log2an,则数列{bn}的前n项和Sn中最大值是(  )
A.S6B.S5C.S4D.S3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(2)若a2,a3,a1不成等比数列,求数列{
1
anan+1
}的前n项和.

查看答案和解析>>

同步练习册答案