精英家教网 > 高中数学 > 题目详情
10.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为$\frac{{\sqrt{6}}}{16}$.

分析 由直观图和原图的面积之间的关系,直接求解即可.

解答 解:正三角形的高OA=$\frac{\sqrt{3}}{2}$,底BC=1,
在斜二侧画法中,B′C′=BC=1,0′A′=$\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
则△A′B′C′的高A′D′=0′A′sin45°=$\frac{\sqrt{3}}{4}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{8}$,
则△A′B′C′的面积为S=$\frac{1}{2}B′C′•A′D′=\frac{1}{2}$×1×$\frac{\sqrt{6}}{8}$=$\frac{{\sqrt{6}}}{16}$,
故答案为:$\frac{{\sqrt{6}}}{16}$.

点评 本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.数列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,求a2008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:一个圆锥的底面半径为1,高为3,在其中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的高;
(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设全集U=R,函数f(x)=$\sqrt{x-a}$+lg(a+3-x)的定义域为集合A,集合$B=\left\{{x|\frac{1}{4}≤{2^x}≤32}\right\}$.
(1)若a=-3,求A∩B;
(2)若A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}(a-3)x+2,x≤1\\{x^{1-a}},x>1\end{array}\right.$是(-∞,+∞)上的减函数,那么a的取值范围是(  )
A.(1,3)B.(1,2]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合U=R,A={x|4≤2x<16},B={x|x≥3}.
(Ⅰ)求:A∩B,(∁UA)∩B;
(Ⅱ)设集合C={x|5-a<x<a},若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足:a5=11,a2+a6=18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知锐角△ABC中,角A、B、C对应的边分别为a、b、c,tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$.
(1)求A的大小;
(2)设函数f(x)=sin(ωx-$\frac{π}{6}$)-cosωx,(ω>0),且f(x)图象上相领两最高点间的距离为π,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},则A∩B=(2,4].

查看答案和解析>>

同步练习册答案