精英家教网 > 高中数学 > 题目详情

【题目】判定下列函数的奇偶性.

1fx

2fx

3fx

4fx=|x+1|+|x-1|.

【答案】1非奇非偶函数2既是奇函数又是偶函数,

3奇函数,4偶函数

【解析】1fx的定义域是-∞,11,+∞,不关于原点对称,∴fx是非奇非偶函数.

2fx的定义域是{-1,1},关于原点对称,且f-1=f1=0,∴f-1=f1,且

f-1=-f1

函数fx既是奇函数又是偶函数.

3fx的定义域为-∞,+∞,关于原点对称,

fx是奇函数.

4fx的定义域为R

又f-x=|-x+1|+|-x-1|=|x-1|+|x+1|=fx

fx是偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为,盈利额为

之间的函数关系;

该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?

(参考数据:.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形 ABCD 中,对角线 AC 与 BD 相交于一点 O,∠A=60°,将△BDC 沿着 BD 折起得△BDC',连结 AC'.
(Ⅰ)求证:平面 AOC'⊥平面 ABD;
(Ⅱ)若点 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直线 CD 与底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数(mZ)为偶函数,且在区间(0,+∞)上是单调增函数.

(1)求函数f(x)的解析式;

(2)设函数,若g(x)>2对任意的xR恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性.

(1)f(x)=x2-|x|+1,x[-1,4]; (2)f(x)=

(3)f(x)= (4)f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

同步练习册答案