精英家教网 > 高中数学 > 题目详情

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

【答案】
(1)解:设公差为为d,a1=2,且a2+1,a4+1,a8+1成等比数列,

∴(a4+1)2=(a2+1)(a8+1),

∴(3d+3)2=(3+d)(3+7d),

解得d=3,

∴an=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1


(2)解:∵数列{bn}满足bn=

∴bn=

∴bnbn+1= =3(

∴b1b2+b2b3+…+bnbn+1=3( + ++ )=3( )=

=

解得n=10,

故正整数n的值为10


【解析】(1)由a2+1,a4+1,a8+1成等比数列,建立关于d的方程,解出d,即可求数列{an}的通项公式;(2)表示出bn , 利用裂项相消法求出b1b2+b2b3+…+bnbn+1 , 建立关于n的方程,求解即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为,直线经过椭圆的右焦点与椭圆交于两点,且.

(I)求直线的方程;

(II)已知过右焦点的动直线与椭圆交于不同两点,是否存在轴上一定点,使?(为坐标原点)若存在,求出点的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ex﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估计ln2的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,该函数所表示的曲线上的一个最高点为由此最高点到相邻的最低点间曲线与轴交于点.

(1)函数解析式

(2)求函数的单调区间

(3)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:

身高达标

身高不达标

总计

积极参加体育锻炼

40

不积极参加体育锻炼

15

总计

100

(1)完成上表;

(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).

参考公式:

参考数据:

P(K2≥k)

0.25

0.15

0.10

0.05

0.025

0.010

0.001

k

1.323

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+ )= ,曲线C的参数方程为:
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集为(﹣1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若 =2,且b=2 ,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且点M和N分别为B1C和D1D的中点.
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.

查看答案和解析>>

同步练习册答案