精英家教网 > 高中数学 > 题目详情

【题目】某地区2011年至2017年农村居民家庭人均纯收入(单位:千元)的数据如下表:

(I)求关于的线性回归方程;

(II)利用(I)中所求的线性回归方程,分析该地区2011年至2017年农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.

参考公式:.

【答案】(I);(II)6.3千元.

【解析】

I由表中数据计算,求出回归系数,写出回归方程;II0.50y关于x正相关,求出x8的值即可.

I)由表中数据知,

关于的线性回归方程为

II)由(I)可知,

故该地区2011年至2017年农村居民家庭人均纯收入在逐年增加,平均每年增加0.5千元,

时,

预测该地区2018年农村居民家庭人均纯收入为6.3千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2x.

(1)f(x)=,求x的值;

(2)2tf(2t)+mf(t)≥0对于t[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)求证:直线过定点,并求出此定点的坐标.

【答案】I;(II证明见解析.

【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.

试题解析:由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.

)由()知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得解得

,即时,直线的方程为

,即时,直线的方程为,整理得的方程为,此时直线恒过定点 也在直线的方程为上,故直线的方程恒过定点.

型】解答
束】
21

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线C1的参数方程为t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ21+sin2θ)=2,点M的极坐标为().

1)求点M的直角坐标和C2的直角坐标方程;

2)已知直线C1与曲线C2相交于AB两点,设线段AB的中点为N,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把焦点相同且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”已知是一对相关曲线的焦点,分别是椭圆和双曲线的离心率,若为它们在第一象限的交点,,则双曲线的离心率( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医药公司针对某种疾病开发了一种新型药物,患者单次服用制定规格的该药物后,其体内的药物浓度随时间的变化情况(如图所示):当时,的函数关系式为为常数);当时,的函数关系式为为常数).服药后,患者体内的药物浓度为,这种药物在患者体内的药物浓度不低于最低有效浓度,才有疗效;而超过最低中毒浓度,患者就会有危险.

(1)首次服药后,药物有疗效的时间是多长?

(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为的等差数列的首项为1,前项和为,且数列是等差数列.

(1)求数列的通项公式;

(2)设,问:均为正整数,且能否成等比数列?若能,求出所有的的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号

码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。

(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

同步练习册答案