精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是(

A.高一年级得分中位数小于高二年级得分中位数

B.高一年级得分方差大于高二年级得分方差

C.高一年级得分平均数等于高二年级得分平均数

D.高一年级班级得分最低为

【答案】C

【解析】

分别算出高一、高二的中位数即可判断选项A;由茎叶图的的分布可判断选项B;分别算出高一、高二的平均数即可判断选项CD选项由图可看出正误.

高一年级成绩的中位数为高二年级成绩的中位数为 所以A不正确;

高一年级各班级得分分布更集中更均匀,故高一年级得分方差小于高二年级得分方差,故B不正确;

高一年级得分平均数

高二年级得分平均数,故C正确;

高一年级各班级得分的最低分为,故D不正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(mR)的导函数为

1)若函数存在极值,求m的取值范围;

2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式(0)上恒成立,求正整数k的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知PA平面ABCD且四边形ABCD为直角梯形,ABC=∠BADPAAD=2,ABBC=1,点ME分别是PAPD的中点

(1)求证:CE//平面BMD

(2)Q为线段BP中点,求直线PA与平面CEQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P40)的动直线与抛物线C交于点AB,且(点O为坐标原点).

1)求抛物线C的方程;

2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQBQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是处在同-个平面内的两个全等的直角三角形,,连接是上一点,过,交于点,沿向上翻折,得到如图2所示的六面体

1)求证:

2)设若平面底面,若平面与平面所成角的余弦值为,求的值;

3)若平面底面,求六面体的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆台的轴截面为等腰梯形圆台的侧面积为.若点分别为圆上的动点,且点在平面的同侧.

1)求证:

2)若,则当三棱锥的体积取最大值时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)①求函数的单调区间;

②若满足,且.求证:

2)函数.若对任意,都有,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数,讨论的单调性;

(Ⅱ)若函数的导数的两个零点从小到大依次为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

查看答案和解析>>

同步练习册答案