已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>.
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
(Ⅰ)F(x)=在(0,+∞)上是增函数;(Ⅱ)f(x1)+f(x2)<f(x1+x2);(Ⅲ)f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
【解析】
试题分析:(Ⅰ)判断F(x)的单调性,则需对F(x)求导,得F′(x)=,∵f ′(x)>,x>0,则xf ′(x)-f(x)>0,即F′(x)>0,F(x)=在(0,+∞)上是增函数.(Ⅱ)要证明f(x1)+f(x2)<f(x1+x2),可以从第(Ⅰ)的结论入手,∵x1>0,x2>0,∴0<x1<x1+x2,F(x)=在(0,+∞)上是增函数,则F(x1)<F(x1+x2),即<,而x1>0,所以f(x1)<f(x1+x2),同理f(x2)<f(x1+x2),两式相加,得f(x1)+f(x2)<f(x1+x2),得证.(Ⅲ)(Ⅱ)中结论的推广形式为:设x1,x2,…,xn∈(0,+∞),其中n≥2,则f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).证明的方法同(Ⅱ)的证明,∵x1>0,x2>0,…,xn>0,∴0<x1<x1+x2+…+xn.F(x)=在(0,+∞)上是增函数,F(x1)<F(x1+x2+…+xn),即<,而x1>0,所以f(x1)<f(x1+x2+…+xn),同理f(x2)<f(x1+x2+…+xn),……
f(xn)<f(x1+x2+…+xn),以上n个不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn),得证.
试题解析:(Ⅰ)对F(x)求导数,得F′(x)=.
∵f ′(x)>,x>0,∴xf ′(x)>f(x),即xf ′(x)-f(x)>0,
∴F′(x)>0.
故F(x)=在(0,+∞)上是增函数.
(Ⅱ)∵x1>0,x2>0,∴0<x1<x1+x2.
由(Ⅰ),知F(x)=在(0,+∞)上是增函数,
∴F(x1)<F(x1+x2),即<.
∵x1>0,∴f(x1)<f(x1+x2).
同理可得f(x2)<f(x1+x2).
以上两式相加,得f(x1)+f(x2)<f(x1+x2).
(Ⅲ)(Ⅱ)中结论的推广形式为:
设x1,x2,…,xn∈(0,+∞),其中n≥2,则f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
∵x1>0,x2>0,…,xn>0,
∴0<x1<x1+x2+…+xn.
由(Ⅰ),知F(x)=在(0,+∞)上是增函数,
∴F(x1)<F(x1+x2+…+xn),即<.
∵x1>0,
∴f(x1)<f(x1+x2+…+xn).
同理可得
f(x2)<f(x1+x2+…+xn),
f(x3)<f(x1+x2+…+xn),
……
f(xn)<f(x1+x2+…+xn).
以上n个不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
考点:1.利用导数求单调性;2.利用函数单调性证明不等式.
科目:高中数学 来源:2012-2013学年河南省南阳市高三9月月考理科数学试卷(解析版) 题型:选择题
已知函数f(x)的导函数为,且满足f(x)=2x+ln x,则= ( )
A.-e B.-1 C.1 D.e
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:填空题
已知函数f (x) 的导数f′(x)=a(x+1)(x-a),若f (x)在x=a处取得极大值,则a的取值范围是
查看答案和解析>>
科目:高中数学 来源:2010年高三年级秦皇岛市三区四县联考文科试题 题型:选择题
(文)已知函数f(x)的导数为f′(x),若f′(x)<0(a <x <b)且f(b)>0,则在(a,b)内必有( )
A.f(x)=0 |
B.f(x)>0 |
C.f(x)<0 |
D.不能确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com