精英家教网 > 高中数学 > 题目详情
若直线(a2+4a+3)x+(a2+a-6)y-6=0与x-2y-1=0垂直,则a等于(  )
A、.5B、.5或-3
C、.-3D、不存在
考点:直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:利用直线垂直与斜率的关系即可得出.
解答: 解:∵直线(a2+4a+3)x+(a2+a-6)y-6=0与x-2y-1=0垂直,
∴直线(a2+4a+3)x+(a2+a-6)y-6=0的斜率存在,∴k1=-
a2+4a+3
a2+a-6

x-2y-1=0的斜率k2=
1
2

∴k1k2=-
a2+4a+3
a2+a-6
×
1
2
=-1.
化为a2-2a-15=0,
解得a=5或-3.
故选:B.
点评:本题考查了直线垂直与斜率的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是(  )
A、(
1
4
1
2
)
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
ax+2
(a<0)在区间(-∞,1]上恒有意义,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式-2x2+9x-4>0的解集为A.
(1)求集合A;
(2)对任意的x∈A,都使得不等式a-2x<
4
2x-1
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的长轴、短轴、焦距长度之和为8,则长半轴的最小值是(  )
A、4
B、4
2
C、4(
2
-1)
D、2(
2
-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

O为平行四边形ABCD所在平面上一点,
OA
+
OB
=λ(
OC
+
OD
)
OA
=μ(
AB
+2
AC
)
,则λ的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)与函数y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是下面的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+3x-2y-1=0的圆心坐标为
 
,半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为12,则ab的取值范围是
 

查看答案和解析>>

同步练习册答案