精英家教网 > 高中数学 > 题目详情

【题目】为美化校园,江苏省淮阴中学将一个半圆形的边角地改造为花园.如图所示,O为圆心,半径为1千米,点ABP都在半圆弧上,设∠NOP=POA=,∠AOB=,且.

1)请用分别表示线段NABM的长度;

2)若在花园内铺设一条参观线路,由线段NAABBM三部分组成,则当取何值时,参观线路最长?

3)若在花园内的扇形ONP和四边形OMBA内种满杜鹃花,则当取何值时,杜鹃花的种植总面积最大?

【答案】123

【解析】

1)利用余弦定理表示,并用二倍角公式化简,得答案;

2)由(1)用表示长度l,利用换元法求得最大值;

3)由扇形面积和三角形的面积公式,用表示面积S,对S求导,利用导数分析单调性,从而求得最大值.

1)由余弦定理可知:

因为,所以所以

2)由题可知AB=NA=

所以参观路线的长度=

,

时,取得最大值,此时时,参观路线最长

3)由题可知扇形ONP的面积

三角形AOB的面积

三角形BOM的面积

所以杜鹃花的种植总面积

(舍)

因为,所以

时,S单调递增;当时,S单调递减

所以时,杜鹃花的种植总面积最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义域是上的连续函数图像的两个端点为是图像上任意一点,过点作垂直于轴的直线交线段于点(点与点可以重合),我们称的最大值为该函数的曲径,下列定义域是上的函数中,曲径最小的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角ABC所对的边分别为abc,其中A为锐角,且asinB+C)是bcosCccosB的等差中项.

1)求角A的大小;

2)若点D在△ABC的内部,且满足∠CAD=∠ABD,∠CBDAD1,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1,且,设,透光区域的面积为.

(1)求关于的函数关系式,并求出定义域;

(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形),整体设计方案要求:内部井字形的两根水平横轴米,两根竖轴米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为米.

(1)若,且两根横轴之间的距离为米,求景观窗格的外框总长度;

(2)由于预算经费限制,景观窗格的外框总长度不超过米,当景观窗格的面积(多边形的面积)最大时,给出此景观窗格的设计方案中的大小与的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为D,若对任意的x1D,总存在x2D,使得fx1fx2)=1,则称函数fx)具有性质M.下列结论:①函数yx3x具有性质M;②函数y3x+5x具有性质M;③若函数ylog8x+2),x[0t]时具有性质M,则t510;④若y具有性质M,则a5.其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)如果方程有两个不相等的解,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶如图所示.

)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;

)若从乙车间件样品中随机抽取两件,求所抽取两件样品重量之差不超过克的概率.

查看答案和解析>>

同步练习册答案