A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
分析 如图所示,建立空间直角坐标系.利用向量的夹角公式、数量积的运算性质即可得出.
解答 解:如图所示,建立空间直角坐标系.
不妨设AB=2,则D(0,0,0),A(2,0,0),C(0,2,0),N(2,2,1),B1(2,2,2).
$\overrightarrow{A{B}_{1}}$=(0,2,2),$\overrightarrow{CN}$=(2,0,1).
∴cos$<\overrightarrow{AM},\overrightarrow{CN}>$=cos$<\overrightarrow{A{B}_{1}},\overrightarrow{CN}>$=$\frac{\overrightarrow{A{B}_{1}}•\overrightarrow{CN}}{|\overrightarrow{A{B}_{1}}||\overrightarrow{CN}|}$=$\frac{2}{\sqrt{8}×\sqrt{5}}$=$\frac{\sqrt{10}}{10}$.
∴直线AM与CN所成角的余弦值为$\frac{\sqrt{10}}{10}$.
故选:B.
点评 本题考查了通过求向量的夹角公式求异面直线的夹角、数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{{k^2}+k+2}}{2}$ | B. | k2+k+2 | C. | $\frac{{{k^2}+k}}{6}$ | D. | $\frac{{{k^2}+1}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\sqrt{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com