精英家教网 > 高中数学 > 题目详情
9.函数f(x)=loga(ax-3)在[1,3]上单调递增,则a的取值范围是(  )
A.(1,+∞)B.(0,1)C.(0,$\frac{1}{3}$)D.(3,+∞)

分析 由题意可得可得a>1,且a-3>0,由此求得a的范围.

解答 解:∵函数f(x)=loga(ax-3)在[1,3]上单调递增,而函数t=ax-3在[1,3]上单调递增,
根据复合函数的单调性可得a>1,且a-3>0,求得a>3,
故选:D.

点评 本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=(cosx,sinx),x∈[0,$\frac{π}{2}$].若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知p:|x-2|≤5,q:x2-2x+1-m2≤0(m<0),且p是q的必要条件,则实数m的取值范围是[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A={x|-2≤x<4},B={x|x2-ax-4≤0},若B⊆A,则实数a的取值范围为(  )
A.{a|-1≤a<2}B.{a|-1≤a≤2}C.{a|0≤a≤3}D.{a|0≤a<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$]C.(0,$\frac{4}{3}$)D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)若α+β=45°,求证:(tanα+1)(tanβ+1)=2;
(2)若(tanα+1)(tanβ+1)=2,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x2+2xy-8y2+2x+14y-3=(x+4y+a)(x-2y+b),求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.思考:(1)如果f(0)=a≠0,函数f(x)可以是奇函数吗?可以是偶函数吗?
(2)是否存在图象既关于y轴对称又关于原点对称的函数?若存在,试写出它们的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若sinα+cosα=tanα,则角α所在区间是[kπ-arctan$\sqrt{2}$,kπ+arctan$\sqrt{2}$],k∈Z.

查看答案和解析>>

同步练习册答案