精英家教网 > 高中数学 > 题目详情
4.如图所示,在△ABC中,已知D为AB的中点,E为AC的中点,试判断$\overrightarrow{DE}$与$\overrightarrow{BC}$是否共线.

分析 由平面向量共线的定义,结合题意即可判断出结论.

解答 解:$\overrightarrow{DE}$与$\overrightarrow{BC}$共线,因为:
△ABC中,D为AB的中点,E为AC的中点,
所以,DE∥BC,
所以.$\overrightarrow{DE}$与$\overrightarrow{BC}$共线.

点评 本题考查了平面向量的共线问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知x≠-1,则代数式$\frac{{x}^{2}}{x+1}$的取值范围是(-∞,-4]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:
(1)f(a)+f($\frac{1}{a}$);
(2)f(1)+f(2)+f(3)+f($\frac{1}{2}$)+f($\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:(0.0064)${\;}^{-\frac{1}{4}}$-($\frac{7}{8}$)0+[($\sqrt{2}$)3]${\;}^{-\frac{4}{3}}$+16-0.75

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\frac{3π}{2}$<α$<\frac{5π}{2}$,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosα}}$=sin$\frac{α}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx-$\frac{1}{2}$(ω>0,x∈R)的图象上相邻两个最高点的距离为π,将函数f(x)的图象向左平移$\frac{π}{6}$个单位后得函数g(x),设△ABC三个内角A、B、C的对边分别为a、b、c.
(1)若c=$\sqrt{7}$,f(C)=0,sinB=3sinA,求a、b的值;
(2)若g(B)+g(-B)=-$\frac{3}{2}$,B∈(0,$\frac{π}{2}$),且向量$\overrightarrow{m}$=(cosA,cosB),$\overrightarrow{n}$=(1,sinA-cosAtanB),求$\overrightarrow{m}$•$\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在$\frac{1-cosα}{1+cosα}$=α中,α的取值范围是(  )
A.α<-1B.α≥0C.α>-1D.α<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5},则(  )
A.U=A∪BB.U=∁UA∪BC.U=A∪∁UBD.U=∁UA∪∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\sqrt{3}$sin(2x+φ),若f(α)=$\sqrt{3}$,则(  )
A.f(α+$\frac{5π}{6}$)>f(α+$\frac{π}{12}$)B.f(α+$\frac{5π}{6}$)<f(α+$\frac{π}{12}$)C.f(α+$\frac{5π}{6}$)=f(α+$\frac{π}{12}$)D.大小与α,φ有关

查看答案和解析>>

同步练习册答案