精英家教网 > 高中数学 > 题目详情

【题目】销售甲、乙两种商品所得利润分别是万元,它们与投入资金 万元的关系分别为,(其中都为常数),函数对应的曲线如图所示.

1)求函数的解析式;

2)若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.

【答案】(1);(2)该商场所获利润的最大值为1万元.

【解析】

1)分别将代入解析式中,即可求得,,,需注意标出范围

2)设总利润,设甲商品投资万元,乙投资万元,分别代入,,可得,利用换元法,,,即可求得最大值.

(1)由题意,将代入,,解得,

代入,可得,

(2)设销售甲商品投资万元,则乙投资万元,则,,

设总利润,

,,

时,取到最大值为.

答:该商场所获利润的最大值为1万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照 分组得到如下频率分布直方图

根据调查,该电子商务公司制定了发放电子优惠券的办法如下:

(Ⅰ)求购物者获得电子优惠券金额的平均数;

(Ⅱ)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.80.9万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的图像在点处的切线方程;

(2)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意的实数都有:,且当时,有

1)求

2)求证:上为增函数;

3)若,且关于的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,

(1)判断的奇偶性,并说明理由;

(2),求使成立的x的集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形, 平面 ,点是棱上异于的一点.

(1)求证:

(2)过点平面截四棱锥得到截面(点在棱上),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中, 平面,底面为菱形, 中点, 的中点, 上的点.

(Ⅰ)求证:平面平面

(Ⅱ)当中点,且时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论的单调性;

(2)若函数有两个极值点,且,求证: .

查看答案和解析>>

同步练习册答案