精英家教网 > 高中数学 > 题目详情
9.如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1,CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

分析 (1)推导出AB⊥AE,AB⊥AA1,从而AB⊥面A1ACC1,由此能证明AB⊥AC,以A为原点,分别以AB,AC,AA1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能证明DF⊥AE.
(2)求出平面DEF的法向量和平面ABC的法向量,利用向量法能求出平面DEF与平面ABC所成锐二面角的余弦值.

解答 证明:(1)∵AE⊥A1B1,A1B1∥AB,
∴AB⊥AE,又∵AB⊥AA1,AE∩AA1=A,
∴AB⊥面A1ACC1,又∵AC?面A1ACC1
∴AB⊥AC,
以A为原点,分别以AB,AC,AA1所在直线为x,y,z轴,
建立空间直角坐标系,
则A(0,0,0),E(0,2,1),F(1,1,0),A1(0,0,2),B1(2,0,2),
设D(x,y,z),$\overrightarrow{{A}_{1}D}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,且λ∈[0,1],
即(x,y,z-2)=λ(2,0,0),∴D(2λ,0,2),
∴$\overrightarrow{DF}$=(1-2λ,1,-2),$\overrightarrow{AE}$=(0,2,1),
∵$\overrightarrow{DF}•\overrightarrow{AE}$=0+2-2=0,
∴DF⊥AE.
解:(2)D(1,0,2),E(0,2,1),F(1,1,1),
$\overrightarrow{DE}$=(-1,2,-1),$\overrightarrow{DF}$=(0,1,-1),
设平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=-x+2y-z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=y-z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(1,1,1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.淘宝卖家为了解喜爱网购是否与性别有关,对买家100人进行了问卷调查得到了如表的列联表:
喜爱网购不喜爱网购合计
a=20b
cd=10
合计100
已知在全部100人中随机抽取1人抽到不爱网购的概率为$\frac{2}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为喜爱网购与性别有关,请说明理由.
参考公式:K2=$\frac{n{(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P=(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若y=0是曲线y=x3+bx+c的一条切线,则($\frac{b}{3}$)3+($\frac{c}{2}$)2=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是[$\frac{17}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{2cosθ}{si{n}^{2}θ}$
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{{x}^{2}-3}{{e}^{x}}$在区间(0,a)上单调,则a的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此规律,第100个等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.[$\sqrt{n}$]表示不超过$\sqrt{n}$的最大整数.若
S1=[$\sqrt{1}$]+[$\sqrt{2}$]+[$\sqrt{3}$]=3,
S2=[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10,
S3=[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21,
…,
则Sn=(  )
A.n(n+2)B.n(n+3)C.(n+1)2-1D.n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=$\frac{sinx}{|tanx|}$(0<x<π,x≠$\frac{π}{2}$)的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案