精英家教网 > 高中数学 > 题目详情
已知sinα=
1
3
,2π<α<3π,那么sin
α
2
+cos
α
2
 
考点:二倍角的正弦
专题:计算题,三角函数的求值
分析:由(sin
α
2
+cos
α
2
2=1+sinα=
4
3
,又π<
α
2
2
,可得sin
α
2
+cos
α
2
<0,即可求sin
α
2
+cos
α
2
的值.
解答: 解:∵(sin
α
2
+cos
α
2
2=1+sinα=
4
3

∵2π<α<3π,
∴π<
α
2
2

∴sin
α
2
<0,cos
α
2
<0
∴sin
α
2
+cos
α
2
<0
∴sin
α
2
+cos
α
2
=-
2
3
3

故答案为:-
2
3
3
点评:本题主要考查了二倍角的正弦公式的应用和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:
用煤(吨)用水(吨)产值(万元)
生产一吨甲种产品5310
生产一吨乙种产品3512
在APEC会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多46吨,用水最多50吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的是(  )
A、“b2=ac”是“a,b,c成等比数列”的充分不必要条件
B、“f(0)=0”是“函数f(x)为奇函数”的必要不充分条件
C、给定向量
a
b
,“
a
b
=0
”是“
a
b
”的充要条件
D、“0<α<β<
π
2
”是“sinα<sinβ”的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=2cos
x
2
,若△ABC满足f(A)=1,BC=7,sinB=
5
3
14
,求AC及AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的周长为20cm,面积为 9cm2,求扇形圆心角的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(
x
+1)=x2+2
x
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+|x-a|+1,x∈R,a∈R.
(1)讨论函数的奇偶性;
(2)若函数f(x)的最小时为g(a),令m=g(a),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)在直线x-y-1=0上运动,则(x-2)2+(y-2)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈Z|-1<x<3},B={-2,-1,0,1,2},则A∩B中的元素个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案