精英家教网 > 高中数学 > 题目详情
在△ABC中,射影定理可以表示为a=bcosC+ccosB,其中a,b,c依次为角A、B、C的对边.类比以上定理,如图,在四面体P-ABC中,S1、S2、S3、S分别表示△PAB、△PBC、△PCA、△ABC的面积,α、β、γ依次表示面PAB、面PBC、面PCA与底面ABC所成角的大小,我们猜想将射影定理类比推广到三维空间,其表现形式应为
 
考点:类比推理
专题:综合题,推理和证明
分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,即可得出结论.
解答: 解:由已知在平面几何中,在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,
我们可以类比这一性质,推理出:
若四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3
二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=S1cosα+S2cosβ+S3cosγ.
故答案为:S=S1cosα+S2cosβ+S3cosγ.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个语句中,有一个语句是错误的,这个错误的语句序号为.
①若
a
-
b
=
0
,则
a
=
b

②若
a
b
=0,则
a
=
0
b
=
0

③若k∈R,k
a
=
0
,则k=0或
a
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x+log2
1-x
1+x
,其定义域为(-1,1).
(1)求f(
1
2014
)+f(-
1
2014
)的值;
(2)判断函数f(x)在定义域上的单调性并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式1+2x+4xa>0在x∈(-∞,-1]时总成立,求实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2是其焦点,点P在椭圆上.
(Ⅰ)若∠F1PF2=90°,且△PF1F2的面积等于1,求椭圆的方程;
(Ⅱ)直线PF1交椭圆于另一点Q,分别过点P,Q作直线PQ的垂线,交x轴于点M,N,当|MN|取最小值时,求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn=C
 
1
n
a1+C
 
2
n
a2+…+C
 
n
n
an,n∈N*
(1)若Sn=n•2n-1(n∈N),是否存在等差数列{an}对一切自然数n满足上述等式?
(2)若数列{an}是公比为q(q≠±1),首项为1的等比数列,数列{bn}满足b1+b2+…+bn=
Sn
2n
(n∈N*),求证:{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:log363-2log3
7

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两家商场对同一种商品开展促销活动,两家商场对购买该商品的顾客奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为20°,边界忽略不计)即为中奖.
乙商场:从装有3个白球2个红球1个黄球的盒子中一次性随机地摸出2个球,如果摸到的是2个红球,即为中奖.
问:购买该商品的顾客在哪家商场中奖的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(πx+φ)(0<φ<
π
2
)的部分图象如图所示.
(Ⅰ)写出φ及图中x0的值;
(Ⅱ)求f(x)在区间[-
1
2
1
3
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案