(1)求点P到平面ABCD的距离;
(2)求面APB与面CPB所成二面角的大小.
解:(1)如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD,OB与AD交于点E,连结PE.
∵AD⊥PB,∴AD⊥OB.
∵PA=PD,
∴OA=OD.
于是OB平分AD,点E为AD的中点,
∴PE⊥AD.
由此知∠PEB为面PAD与面ABCD所成二面角的平面角,
∴∠PEB=120°,∠PEO=60°.
由已知可求得PE=,
∴PO=PE·sin60°=×=,
即点P到平面ABCD的距离为.
(2)如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG∥BC,FG=BC.
∵AD⊥PB,∴BC⊥PB,FG⊥PB.∴∠AGF是所求二面角的平面角.
∵AD⊥面POB,∴AD⊥EG.
又∵PE=BE,∴EG⊥PB,且∠PEG=60°.
在Rt△PEG中,EG=PE·cos60°=.
在Rt△PEG中,EG=AD=1.
于是tan∠GAE==.
又∠AGF=π-∠GAE,∴所求二面角的大小为π-arctan.
科目:高中数学 来源: 题型:
| ||
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
8
| ||
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
PN |
1 |
2 |
NC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com