精英家教网 > 高中数学 > 题目详情
已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.
分析:(1)由当x>0时,通过平方关系和辅助角法将f(x)转化为y=
2
sin(2x+
π
4
)+2
,设x<0时,则-x>0,,再由奇偶性求解.
(2)将方程f(x)-a=0转化为a=f(x),这样求a的范围即求函数f(x)的值域.
解答:解:(1)当x>0时,f(x)=(sinx+cosx)2+2cos2x=sin2x+2cos2x+1=sin2x+cos2x+2
=
2
sin(2x+
π
4
)+2

x<0时,-x>0,f(x)=-f(-x)
=
2
sin(2x-
π
4
)-2
(6分)
(2)若关于x的方程f(x)-a=o有解,
a=f(x)∈[-
2
-2,
2
-2]∪[-
2
+2,
2
+2]∪{0}
(12分)
点评:本题主要考查用奇偶性求对称区间上的解析式,涉及到同角三角函数基本关系式和辅助角法以及求函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+ln
x
2-x
(0<x<2).
(1)试问f(x)+f(2-x)的值是否为定值?若是,求出该定值;若不是请,说明理由;
(2)定义Sn=
2n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+
f(
2n-1
n
)
,其中n∈N*,求S2013
(3)在(2)的条件下,令Sn+1=2an,若不等式2an(an)m>1对?n∈N*且n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-|2x-a|,a∈R.
(I)当a=5时,求不等式f(x)≥3x-2的解集.
(II)求证:函数f(x)=1-|2x-a|的最大值恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

同步练习册答案