精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)讨论函数的单调性;

2)若,求函数的最值.

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:1)先求导,分类讨论即可求出函数的单调区间;(2)求导,根据导数和函数的最值得关系即可求出注意分类讨论

试题解析:(1),令,得

①若,则恒成立,所以函数上单调递增;

②若,则由,得;由,得

所以函数上单调递增,在上单调递减;

③若,则由,得;由,得

所以函数上单调递增,在上单调递减;

④若,则恒成立,所以函数上单调递减.

(2)若

①当时, ,由(1)得,函数上单调递增,在上单调递减,

时,函数有最大值,无最小值;

②当时, ,由(1)得,函数上单调递增,在上单调递减,

时,函数有最小值,无最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面 分别为 的中点.

(1)求证: 平面

(2)求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某钢厂打算租用两种型号的火车车皮运输900吨钢材,两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用表示租用两种车皮的个数.

1)用列出满足条件的数学关系式,并画出相应的平面区域;

2)分别租用两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形, 平面 是棱上的一个动点.

(Ⅰ)若的中点,求证: 平面

)求证:平面平面

(Ⅲ)若三棱锥的体积是四棱锥体积的,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=﹣ x3+ x2﹣6x+5的单调增区间是(
A.(﹣∞,2)和(3,+∞)
B.(2,3)
C.(﹣1,6)
D.(﹣3,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x方程 ﹣x=lnx有唯一的解,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出曲线的直角坐标方程;

(Ⅱ)设点. 分别在.上运动,若的最小值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】恒成立.

1)求实数的值;

2)证明: 存在唯一的极大值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4—4:坐标系与参数方程】

将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

Ⅰ)写出C的参数方程;

设直线C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案