精英家教网 > 高中数学 > 题目详情

命题:“对任意的”的否定是                         (    )

       A.不存在;   

       B.存在

       C.存在;     

       D.对任意的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面给出的四个命题中:
①对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上是数列an为等差数列的充分不必要条件;
②“m=-2”是直线(m+2)x+my+1=0与“直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点A(x1,0),B(x2,0),C(0,y1),D(0,y2),则有x1x2-y1y2=0;
④将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象.
其中是真命题的有
 
(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:①在函数y=cos(x-
π
4
)cos(x+
π
4
)
的图象中,相邻两个对称中心的距离为π;②函数y=
x+3
x-1
的图象关于点(-1,1)对称;③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;④已知命题p:对任意的x∈R,都有sinx≤1,则?p是:存在,使得sinx>1.其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:对任意的实数x>0都满足x+
1x
≥2a;命题q:曲线C:y=x3-2ax2+2ax在R上单调递增.若p∧q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“对任意的x∈R,x3-x2+1≤0”,则命题¬p是
存在x∈R,x3-x2+1>0
存在x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:对任意的x∈R,有sinx≤1,则¬P是
?x∈R,有sinx>1
?x∈R,有sinx>1

查看答案和解析>>

同步练习册答案