精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线的极坐标方程为,直线的参数方程为

为参数, 为直线的倾斜角).

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有唯一的公共点,求角的大小.

【答案】(1);(2

【解析】试题分析:(I)当时,直线轴可得直线普通方程为,当时,消去参数即可得到直线的普通方程;在极坐标方程两边同乘以,由极坐标与直角坐标的互化公式即可得到曲线的直角坐标方程;(II)由圆心到直线的距离小于等于半径求之即可.

试题解析:(I)当时,直线的普通方程为

时,直线的普通方程为.

,即为曲线的直角坐标方程.

II)当直线的普通方程为,不符合

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f( ),c=﹣f( )的大小关系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,
f(x)= .
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为 ,若函数 满足下列两个条件,则称 在定义域 上是闭函数.① 上是单调函数;②存在区间 ,使 上值域为 .如果函数 为闭函数,则 的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点和上顶点在直线上, 为椭圆上位于轴上方的一点且轴, 为椭圆上不同于的两点,且

(1)求椭圆的标准方程;

(2)设直线轴交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,若,且的图象上两相邻对称轴间的距离为.

的单调递减区间;

的内角 的对边分别为 ,且满足 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上不具有单调性.

(1)求实数的取值范围;

(2)若的导函数,设,试证明对任意两个不相等正数,不等式恒成立.

查看答案和解析>>

同步练习册答案