精英家教网 > 高中数学 > 题目详情
7.已知抛物线方程为y2=4x,直线L过定点P(-2,1),斜率为k,k为何值时,直线L与抛物线y2=4x只有一个公共点;有两个公共点;没有公共点?

分析 设出直线方程代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)
(1)直线与抛物线只有一个公共点?(*)只有一个根
(2)直线与抛物线有2个公共点?(*)有两个根
(3)直线与抛物线没有一个公共点?(*)没有根

解答 解:由题意可设直线方程为:y=k(x+2)+1,
代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)
(1)直线与抛物线只有一个公共点等价于(*)只有一个根
①k=0时,y=1符合题意;
②k≠0时,△=(4k2+2k-4)2-4k2(4k2+4k+1)=0,整理,得2k2+k-1=0,
解得k=$\frac{1}{2}$或k=-1.
综上可得,k=$\frac{1}{2}$或k=-1或k=0;
(2)由(1)得2k2+k-1<0且k≠0,∴-1<k<$\frac{1}{2}$且k≠0;
(3)由(1)得2k2+k-1>0,∴k>$\frac{1}{2}$或k<-1.

点评 本题主要考查了由直线与抛物线的位置关系的求解参数的取值范围,一般的思路是把位置关系转化为方程解的问题,体现了转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$2\sqrt{3}$B.$\frac{2}{3}\sqrt{3}$C.$\frac{4}{3}\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数一定是指数函数的是(  )
A.y=2x+1B.y=x3C.y=3•2xD.y=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥的四个面中,最多共有(  )个直角三角形?
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y-ax取得最大值的最优解不唯一,则实数a的值为(  )
A.$\frac{1}{2}$或-1B.2或$\frac{1}{2}$C.2或-1D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.响应国家提出的“大众创业,万众创新”的号召,小王同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x万件,需另投入流动成本为C(x)万元.在年产量不足8万件时,$C(x)=\frac{1}{3}{x^2}+2x$(万元);在年产量不小于8万件时,$C(x)=7x+\frac{100}{x}-37$(万元).每件产品售价为6元.假设小王生产的商品当年全部售完.
(Ⅰ)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);
(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=2x-$\frac{x^2}{π}$+cosx,设x1,x2∈(0,π),x1≠x2,且f(x1)=f(x2),若x1,x0,x2成等差数列,则(  )
A.f'(x0)>0B.f'(x0)=0
C.f'(x0)<0D.f'(x0)的符号不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆O的半径为2,PA、PB为圆O的两条切线,A、B为切点(A与B不重合),则$\overrightarrow{PA}$$•\overrightarrow{PB}$的最小值为(  )
A.-12+4$\sqrt{2}$B.-16+4$\sqrt{2}$C.-12+8$\sqrt{2}$D.-16+8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a,b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案