精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.

【答案】
(1)解:f(x)的定义域是(0,+∞),m>0,

f′(x)=

令f′(x)>0,解得:x> ,令f′(x)<0,解得:x<

∴f(x)在(0, )递减,在( ,+∞)递增


(2)解:f(x)与g(x)图象的交点个数,

即函数h(x)=f(x)﹣g(x)=﹣ x2﹣mlnx+(m+1)x的零点个数问题,

h′(x)=﹣

令h′(x)>0,解得:1<x<m,令h′(x)<0,解得:x>m或x<1,

∴h(x)在(0,1)递减,在(1,m)递增,在(m,+∞)递减,

∴h(x)极小值=h(1)=m+ >0,

∴h(x)和x轴有1个交点,

即函数f(x)与g(x)图象的交点个数是1个


【解析】(1)先求出函数的导数,解关于导函数的不等式,从而求出函数的单调区间;(2)问题转化为求函数h(x)=f(x)﹣g(x)=﹣ x2﹣mlnx+(m+1)x的零点个数问题,通过求导,得到函数h(x)的单调区间,求出h(x)的极小值,从而求出函数h(x)的零点个数即f(x)和g(x)的交点个数.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为. 现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即终止. 每枚棋子在每一次被摸出的机会都是等可能的.表示取棋子终止时所需的取棋子的次数.

(1)求随机变量的概率分布列和数学期望

(2)求甲取到白棋的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,两坐标系单位长度相同.已知曲线的极坐标方程为,直线的参数方程为为参数)。

(Ⅰ)将直线的参数方程化为普通方程,曲线的极坐标方程化为直角坐标方程

(Ⅱ)设曲线上到直线的距离为的点的个数为,求的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点和直线l 的距离相等.

(Ⅰ)求动点的轨迹E的方程;

(Ⅱ)已知不与垂直的直线与曲线E有唯一公共点A,且与直线的交点为,以AP为直径作圆.判断点和圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量n和频率分布直方图中x、y的值;

(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是

A. B. C. D. 乙和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ex(其中e为自然对数的底数),gx= x+mmnR).

1)若Tx=fxgx),m=1,求Tx)在[01]上的最大值;

2)若m=nN*,求使fx)的图象恒在gx)图象上方的最大正整数n[注意:7e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=(﹣x2+ax)ex(x∈R,e为自然对数的底数).
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

查看答案和解析>>

同步练习册答案