精英家教网 > 高中数学 > 题目详情

中,边分别是角的对边,且满足
(1)求
(2)若,求边的值.

(1) (2).

解析试题分析:(1)根据正弦定理把已知等式转化为角的三角函数式,然后再化简整理,可得.即可得出的值;(2)应用向量的数量积公式把转化为关于边的等式,即.  ①;然后再利用余弦公式表示出,整理得到.  ②,解①和②组成的方程组,即可得到a,c的值.
试题解析:解:(1)由正弦定理和,得
,              2分
化简,得
,                        4分
.
所以.                                       5分
(2)因为,所以
所以,即. (1)               7分
又因为,
整理得,.   (2)                      9分
联立(1)(2) ,解得.   10分
考点:1.正弦定理和余弦定理;2.向量的数量积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角的对边分别为.设向量
(1)若,求角;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在海岸线一侧C处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A、B两个报名点,满足A、B、C中任意两点间的距离为10千米。公司拟按以下思路运作:先将A、B两处游客分别乘车集中到AB之间的中转点D处(点D异于A、B两点),然后乘同一艘游轮前往C岛。据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元。设∠,每批游客从各自报名点到C岛所需运输成本S元。

⑴写出S关于的函数表达式,并指出的取值范围;
⑵问中转点D距离A处多远时,S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,求边的长及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面内.
(Ⅰ)求的大小;
(Ⅱ)求点到直线的距

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的内角所对的边长分别为,且满足
(Ⅰ)求角的大小;
(Ⅱ)若边上的中线的长为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中ω>0,函数,若相邻两对称轴间的距离为
(1)求ω的值;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,,△ABC的面积S=5,b=4,,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B,C,所对的边分别为,且
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为2.
(Ⅰ)求函数上的单调递减区间;
(Ⅱ)中,,角所对的边分别是,且,求的面积.

查看答案和解析>>

同步练习册答案