精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,则输出的k的值是(

A.10 B.11 C.12 D.13

【答案】A

【解析】解:第1次执行循环体后,S=2,k=2,不满足退出循环的条件,

第2次执行循环体后,S=6,k=3,不满足退出循环的条件,

第3次执行循环体后,S=14,k=4,不满足退出循环的条件,

第4次执行循环体后,S=30,k=5,不满足退出循环的条件,

第5次执行循环体后,S=62,k=6,不满足退出循环的条件,

第6次执行循环体后,S=126,k=7,不满足退出循环的条件,

第7次执行循环体后,S=510,k=8,不满足退出循环的条件,

第8次执行循环体后,S=1022,k=9,不满足退出循环的条件,

第9次执行循环体后,S=2046,k=10,满足退出循环的条件,

故输出的k值为10,

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某同学在素质教育基地通过自己设计、选料、制作,打磨出了一个作品,作品由三根木棒组成,三根木棒有相同的端点(粗细忽略不计),且四点在同一平面内,,木棒可绕点O任意旋转,设BC的中点为D.

1)当时,求OD的长;

2)当木棒OC绕点O任意旋转时,求AD的长的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,且在椭圆E上.

1)求椭圆E的标准方程;

2)已知垂直于x轴的直线EAB两点,垂直于y轴的直线ECD两点,的交点为P,且,间:是否存在两定点MN,使得为定值?若存在,求出MN的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线的极坐标方程为,直线过点,倾斜角为.

1)将曲线的极坐标方程化为直角坐标方程,写出直线的参数方程的标准形式;

2)已知直线交曲线两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处切线垂直于轴.

1)求的值;

2)求函数上的最小值;

3)若恒成立,求满足条件的整数的最大值.

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期吴国的数学家赵爽曾创制了一幅勾股圆方图,用数形结合的方法给出了勾股定理的详细证明.如图所示的勾股圆方图中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角满足,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点为,上、下顶点为,记四边形的内切圆为.

(1)求圆的标准方程;

(2)已知圆的一条不与坐标轴平行的切线交椭圆PM两点.

(i)求证:

(ii)试探究是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,矩形所在平面与底面垂直,在直角梯形中,.

1)求证:平面

2)求证:平面

3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是圆F1:(x+12+y216上任意一点,F210),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.

1)求曲线C的方程;

2)记曲线Cx轴交于AB两点,M是直线x1上任意一点,直线MAMB与曲线C的另一个交点分别为DE,求证:直线DE过定点H40.

查看答案和解析>>

同步练习册答案