精英家教网 > 高中数学 > 题目详情
若直线y=kx+1与椭圆
x2
2014
+
y2
m
=1恒有公共点,则m的取值范围是(  )
A、[1,2014)∪(2014,+∞)
B、[1,2014)
C、[1,+∞)
D、(2014,+∞)
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:先根据直线方程可知直线恒过(0,1)点,要使直线y=kx+1与椭圆恒有公共点需(0,1)在椭圆上或椭圆内,进而求得m的范围.
解答: 解:直线y=kx+1恒过点(0,1),
∵直线y=kx+1与椭圆恒有公共点,
∴(0,1)在椭圆上或椭圆内,
∴0+
1
m
≤1,
解得m≥1
又m=2014时,曲线是圆不是椭圆,故m≠2014.
∴实数m的取值范围为:m≥1且m≠2014.
故选:A.
点评:本题主要考查了直线与圆锥曲线的综合问题,解答此题的关键在于明确直线过定点,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)的离心率是
2
2
,且点P(
2
2
,1)
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点D(2,0)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,AA1=AB,F、F1分别是AC、A1C1的中点.
(1)求证:平面AB1F1∥平面C1BF;
(2)求证:平面AB1F1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的极坐标是(2,π),则过点P且垂直极轴的直线方程是(  )
A、p=2
B、p=2cosθ
C、p=-
2
cosθ
D、p=
2
cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,a,b满足条件
x≥0,y≥0
a≥0,b≥0
2x+y+a=6
x+2y+b=6

(1)试画出点(x,y)的存在范围;
(2)求2x+3y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断
CE
MN
的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地铁的到站时间间隔是5分钟.某人进站到达列车门口等车时间超过2分钟的概率是(  )
A、
1
5
B、
1
3
C、
3
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-1,-
3
),
b
=(2,0),则|
a
+
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)满足f(x)=f(2-x)且已知f(5)=3,则f(-1)的值为
 

查看答案和解析>>

同步练习册答案